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A new grid adaptation strategy, which minimizes the truncation error of apth-order
finite difference approximation, is proposed. The main idea of the method is based
on the observation that the global truncation error associated with discretization on
nonuniform meshes can be minimized if the interior grid points are redistributed
in an optimal sequence. The method does not explicitly require the truncation er-
ror estimate, and at the same time, it allows one to increase the design order of
approximation globally by one, so that the same finite difference operator reveals
superconvergence properties on the optimal grid. Another very important charac-
teristic of the method is that if the differential operator and the metric coefficients
are evaluated identically by some hybrid approximation, then the single optimal
grid generator can be employed in the entire computational domain independently
of points where the hybrid discretization switches from one approximation to an-
other. Generalization of the present method to multiple dimensions is presented.
Numerical calculations of several one-dimensional and one two-dimensional test ex-
amples demonstrate the performance of the method and corroborate the theoretical
results. c© 2001 Academic Press

Key Words:truncation error, grid adaptation criterion, finite difference approxi-
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1. INTRODUCTION

Grid adaptation has now become widespread for solving multidimensional partial differ-
ential equations in arbitrary-shaped domains. One of the most important problems associated
with adaptive grid generation is an essential effect of the grid point distribution on error in
the numerical solution. Until the present, little attention has been paid to the fact that the
concentration of grid points in regions which most influence the accuracy of the numerical
solution may at the same time introduce additional error because of grid nonuniformity
[1–3].
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There are two basic strategies of grid adaptation, namely, grid refinement and grid redis-
tribution. In the first approach, grid nodes are added to locally enrich the grid to achieve
higher accuracy. In the second approach, the number of grid nodes is fixed and the idea is
to adjust the position of grid points to improve the numerical solution accuracy. In spite of
significant distinctions, both methods require reliable and efficient grid adaptation criteria.

A number of grid adaptation criteria based on the equidistribution principle have been
developed. As shown in [4] the grid point distribution is asymptotically optimal if some
error measure is equally distributed over the field. One of the widely used approaches is
to redistribute grid points in accordance with the arc length and the local curvature of the
solution curve [5, 6]. This kind of clustering is intended to reduce the error in the vicinity
of strong gradients and local extrema of the numerical solution, but it does not necessarily
guarantee improvement in accuracy where the solution is smooth.

Another class of methods is based on equidistribution or minimization of the local trun-
cation error or its estimate [7–10]. In [7] the error estimate obtained by using a finite
difference approximation of the leading truncation error term is equidistributed by the grid
point redistribution. Klopfer and McRae [8] solve a one-dimensional shock-tube prob-
lem with the explicit predictor-corrector scheme of MacCormack on a grid dynamically
adapted to the solution. The error estimate is the leading truncation error term of the dif-
ferential equations transformed to the computational coordinates. The metric coefficient
is taken as a linear function of the smoothed error measure. For solving a second-order
two-point boundary value problem with a centered second-order finite difference scheme,
Denny and Landis [9] suggest determining the optimal coordinate mapping so that the
entire truncation error vanishes at all grid points. However, this grid generator concen-
trates grid nodes where the solution is smooth rather than near steep gradients. Thus,
the error reduction occurs in regions which do not practically affect the numerical solu-
tion accuracy. An alternative technique is employed in [10], where the optimal coordi-
nate transformation is constructed as the solution of a constrained parameter optimization
problem that minimizes a measure of the truncation error. The error measure used is a
finite difference evaluation of the third derivative of the numerical solution calculated in
the computational space. The main drawback of all the methods mentioned above is the
fact that the error estimates do not properly take into account that part of the truncation
error which is caused by the nonuniform grid spacing. Furthermore, it is not clear how
to extend these methods to more general equations and discretizations, and to multiple
dimensions.

A grid adaptation procedure equidistributing an error estimate of the numerical solution
has been used successfully in [11] to reduce simulation error in such integral quantities
as the lift or drag. This error estimate is directly related to the local residual errors of the
primal and adjoint solutions of the Euler equations. The numerical results presented in [11]
indicate that the order of accuracy of the integral outputs increases by one if the proposed
adaptation strategy is employed. Although this approach provides significant improvement
in the accuracy of the functional, the error estimation procedure is quite expensive in terms
of computational time because, except for the solution of the primal problem, it is necessary
to solve the adjoint Euler equations, which doubles the computational efforts.

The formulation of an adaptive mesh redistribution algorithm for boundary value prob-
lems in one dimension has been presented in [12]. The analysis uses error minimization
to produce an optimal piecewise-polynomial interpolant in a given norm, which leads to
the development of a family of grid adaptation criteria. Despite the fact that the present
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approach works well in one dimension, this error equidistribution analysis cannot be di-
rectly extended to multiple dimensions [13].

In [14, 15] the finite element residual is applied to provide a criterion for determining
where a finite element mesh requires refinement. As has been noted in [16] , for hyperbolic
problems with nonsmooth solutions the finite element residual may be an ineffective error
estimator, because for such problems the residual measured in theL2 norm diverges, whereas
the numerical solution converges in this norm. The problem might be overcome if the
divergence of the residual is localized to the area of nonsmoothness; the residual could then
be used as a local error indicator. However, the localization of discontinuities becomes a
very complicated problem in multiple dimensions.

The truncation error of any differential operator obtained on a nonuniform grid can
be shown to consist of two parts. The first part, which also exists on a uniform mesh,
is due to the approximation of the differential operator itself. The second part is caused
by the contribution to the error from the nonuniform grid spacing. As the grid is lo-
cally refined or redistributed, the first part of the error decreases, while the second part
may increase considerably because of the nonuniformity of the grid. All of the equidis-
tribution methods mentioned above redistribute grid points in accordance with one or
another error estimate obtained on a nonadapted grid, but in doing so the grid adapta-
tion itself introduces additional error, which changes the error distribution. Therefore,
to account for this change in the error distribution, the grid adaptation procedure based
on the error equidistribution strategy should be repeated iteratively until the error esti-
mate norm is equally distributed over the field. Note that for moving meshes dynamically
adapted to the solution, the iterative procedure should be done at each time step to at-
tain the optimal mesh characterized by having the error equidistributed throughout the
domain.

The main objective of this paper is to construct an optimal coordinate transformation
so that the leading truncation error term of an arbitrarypth-order finite difference approx-
imation is minimized so that it provides superconvergent results on the optimal grid. In
contrast to the error equidistribution principle, for the present technique ana posteriori
error estimate is not explicitly required. Furthermore, the new grid adaptation criterion al-
lows one to minimize the error resulting from the differential operator itself and the error
owing to the evaluation of the metric coefficients simultaneously. Another very attractive
feature of the present approach is its applicability to hybrid approximations that depend on
some basic properties of the solution, such as flow direction, sonic line, and others. If the
metric coefficients are evaluated by the same hybrid discretization used for the differen-
tial operator, the new grid adaptation criterion remains valid throughout the computational
domain regardless of points where the hybrid scheme switches from one approximation
to another. Extension of the new adaptation criterion to multiple dimensions is presented.
The numerical examples considered illustrate the ability of the method and corroborate the
theoretical analysis.

2. GRID ADAPTATION IN ONE DIMENSION

The truncation error of the first derivative approximated on a 1-D nonuniform grid is
considered here. Letx andξ denote the physical and computational coordinates, respec-
tively. Without loss of generality it is assumed thata ≤ x ≤ b and 0≤ ξ ≤ 1. A one-to-one
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coordinate transformation between the physical and computational domains is given by

x = x(ξ), (2.1)

where

x(0) = a
(2.2)

x(1) = b.

The above mapping is assumed not singular so that the Jacobian of the transformation is a
strictly positive function, i.e.,

xξ > 0, ∀ξ ∈ [0, 1]. (2.3)

The nonuniform grid in the physical space is obtained as images of nodes of a uniform
mesh in the computational domain

xi = x(ξi ), ξi = i

I
, i = 0, 1, . . . , I . (2.4)

With the coordinate transformation (2.1), the first derivative of a functionf (x) with
respect tox can be written as follows:

fx = fξ
xξ
. (2.5)

To construct apth-order approximation offx in the physical domain, we approximatefξ
andxξ by somepth-order finite difference expressions in the computational domain

Lh( fx) =
∑i+l2

l=i−l1
αl fl∑i+m2

m=i−m1
βmxm

, (2.6)

wherexm = x(ξm), fl = f (ξl ); Lh is a finite difference operator; and the indicesl1, l2 and
m1,m2, as well as the coefficientsαl andβm, depend on particular approximations used
for evaluating fξ andxξ , respectively. Henceforth, it is assumed that the functionsf (ξ)
andx(ξ) are smooth enough so that all derivatives needed for the derivation are continuous
functions onξ ∈ [0, 1]. Expanding the numerator and denominator of Eq. (2.6) in a Taylor
series with respect toξi and omitting the indexi on the right-hand side yields

i+l2∑
l=i−l1

αl fl = fξ + C f
p f (p+1)

ξ 1ξ p + O(1ξ p+1)

(2.7)
i+m2∑

m=i−m1

βmxm = xξ + Cx
px(p+1)
ξ 1ξ p + O(1ξ p+1),

where

x(p+1)
ξ = ∂ p+1x

∂ξ p+1
, f (p+1)

ξ = ∂ p+1 f

∂ξ p+1
, 1ξ = 1

I
,
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and whereC f
p andCx

p are constants dependent onαl andβm, respectively. Substituting
Eq. (2.7) into Eq. (2.6) and taking into account thatxξ > 0, ∀ξ ∈ [0, 1], one can write

Lh( fx) =
fξ + C f

p1ξ
p f (p+1)
ξ

xξ
(

1+ Cx
p
1ξ p

xξ
x(p+1)
ξ

) + O(1ξ p+1). (2.8)

If 1ξ is chosen to be sufficiently small so that1ξ p|x(p+1)
ξ /xξ | ¿ 1, Eq. (2.8) can be

linearized as follows:

Lh( fx) = 1

xξ

(
fξ + C f

p1ξ
p f (p+1)
ξ

)(
1− Cx

p

1ξ p

xξ
x(p+1)
ξ

)
+ O(1ξ p+1). (2.9)

Note that the error introduced by the linearization is of the order ofO(1ξ2p). Neglecting
higher order terms in Eq. (2.9) yields

Tp(x) = Lh( fx)− fx = C f
p1ξ

p f (p+1)
ξ

xξ
− Cx

p1ξ
p x(p+1)

ξ

x2
ξ

fξ . (2.10)

The right-hand side of Eq. (2.10) is the leading truncation error term. Thus, if the
metric coefficientxξ is evaluated numerically as in Eq. (2.6), the asymptotic truncation
error of anypth-order finite difference approximation consists of two parts: the first one
resulting from the evaluation offξ and the second one caused by the discretization of the
metric coefficientxξ . It should be emphasized that any grid adaptation based on minimization
or equidistribution of the first part of the truncation error alone is not sufficient because the
second part of the truncation error may drastically increase in regions wherex(ξ) changes
rapidly. In other words, any inconsistent grid adaptation transfers the error from the first term
of the truncation error to the second, and vice versa. To minimize both parts of the truncation
error simultaneously, the following restriction is imposed on the coordinate mappingx(ξ),
∀ξ ∈ [0, 1]: ∣∣C f

p f (p+1)
ξ xξ − Cx

px(p+1)
ξ fξ

∣∣ ≤ O(1ξ)x2
ξ . (2.11)

If Eq. (2.11) holds, the asymptotic order of approximation of Eq. (2.6) on the optimal grid
generated by the mappingx(ξ) is p+ 1 in the entire computational domain. Replacing
the inequality sign in Eq. (2.11) with the equality sign, the grid adaptation criterion can be
expressed as

C f
p f (p+1)

ξ xξ − Cx
px(p+1)
ξ fξ = O(1ξ)x2

ξ . (2.12)

Note that the presence of theO(1ξ) term in the above equation shows that the grid adaptation
criterion is rather stable under perturbations of the optimal grid.

Recall that the coefficientsC f
p andCx

p depend on the particular approximations used and
do not depend onf (ξ) andx(ξ). One of the most important classes of approximation is a
consistent approximation, where the same difference operator is employed to evaluate the
derivatives fξ andxξ . In this case, the coefficientsC f

p andCx
p are identical and Eq. (2.12)

is simplified to

f (p+1)
ξ − fxx(p+1)

ξ = O(1ξ)xξ , (2.13)



464 NAIL K. YAMALEEV

or setting the right-hand side equal to zero yields

f (p+1)
ξ xξ − fξ x

(p+1)
ξ = 0. (2.14)

There are several advantages of such a simplification. First of all, the use of the same
difference approximation for bothfξ and xξ eliminates thefx term from the truncation
error. Actually, let us representfξ and f (p+1)

ξ in terms of thex derivatives:

fξ = xξ fx

f (p+1)
ξ = x(p+1)

ξ fx + (p+ 1)x(p)ξ xξ fxx + · · · + xp+1
ξ f (p+1)

x .
(2.15)

With the above expressions substituted into Eq. (2.10), the leading term of the truncation
errorTp(x) can be written as follows:

Tp(x) =
(
C f

p − Cx
p

)
1ξ p x(p+1)

ξ

xξ
fx + C f

p1ξ
p
[
(p+ 1)x(p)ξ fxx + · · · + xp

ξ f (p+1)
x

]
. (2.16)

Equation (2.16) shows that ifC f
p 6= Cx

p, then the truncation error depends on the first
derivative fx being approximated. In order to eliminate this term, the metric coefficient
must be evaluated by the same difference approximation used forfξ . Note that ifxξ is
approximated by the exact analytical expression or any finite difference formula different
from that employed to calculatefξ , the fx term arises in the truncation error.

Another advantage of the consistent approximation offξ and xξ is that the single
optimal grid (in the sense of Eq. (2.14)) can be generated for hybrid discretization where
the coefficientC f

p may be discontinuous in space and implicitly may depend on the function
f (ξ). If C f

p 6= Cx
p and the coefficientC f

p is discontinuous, then the optimal mapping defined
by Eq. (2.12) is discontinuous as well. The identical numerical approximation ofxξ and fξ
removes the dependence of the optimal mapping on points in the physical domain where
the hybrid scheme switches from one approximation to another. If identical numerical
approximation is the case, the optimal grid point distribution depends only on the order
of approximation and is completely independent of the particular finite difference formula
used.

As has already been mentioned, Eq. (2.14) is a grid adaptation criterion, but at the same
time this equation can be treated as a grid generation equation. To provide the existence of the
solution of Eq. (2.14), it is assumed thatfξ > ε > 0, ∀ξ ∈ [0, 1], and f (ξ) ∈ Cp+1[0, 1].
It can easily be seen thatx(ξ) = c1 f (ξ)+ c2 is the solution of Eq. (2.14), but this triv-
ial solution is not appropriate because it means thatf (x) is a linear function ofx in the
physical space. Another problem associated with the solution of Eq. (2.14) is boundary
conditions. Taking into account Eq. (2.15), one can show that Eq. (2.14) is apth-order ordi-
nary differential equation. Therefore, to find the unique solution of Eq. (2.14),p boundary
conditions should be imposed, but only the two boundary conditions (2.2) are available.
In spite of the above-mentioned difficulties, the optimal grid generation problem (2.14),
(2.2) can be solved analytically for very important casesp = 1, 2, and the approximate
analytical solutions can be obtained for higher order discretizationsp ≥ 3.
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2.1. First-Order Approximation, p= 1

For a first-order accurate approximationp is equal to 1 in Eq. (2.13), which then takes
the form

fξξ xξ − fξ xξξ = O(1ξ)x2
ξ . (2.17)

By using the following expression for the second derivative,

fxx = fξξ xξ − fξ xξξ
x3
ξ

,

Eq. (2.17) written in the physical space is reduced to

ξx = fxx

O(1ξ)
. (2.18)

Integrating Eq. (2.18) and taking into account the boundary conditionsξ(a) = 0, ξ(b) = 1
yields

ξ(x) =
∫ x

a fxx dx∫ b
a fxx dx

. (2.19)

However, to satisfy Eq. (2.18) the following restriction should be imposed onfxx:

b∫
a

fxx dx = O(1ξ). (2.20)

To satisfy Eqs. (2.3) and (2.18), in this section it is assumed thatfxx > 0. As will be shown
in the next section, this restriction can easily be removed. Equation (2.20) indicates that the
second derivativefxx has to be of the order ofO(1ξ) for all x ∈ [a, b]. In other words, if
f (x) is an essentially nonlinear function, so that Eq. (2.20) is not satisfied, it is impossible
to increase the global order of approximation offx by grid point redistribution.

In spite of the fact that the order of the approximation remains equal to 1, the global
truncation error is minimized on the optimal grid Eq. (2.19). Actually, for first-order dis-
cretizations the leading truncation error term Eq. (2.10) is rewritten as

T1(x) = C11ξ
fξξ xξ − fξ xξξ

x2
ξ

= C11ξ
fxx

ξx
, (2.21)

whereC1 is a constant dependent on the particular first-order approximation used. TheLk

norm of the truncation error, which is

‖T1(x)‖Lk
= C11ξ

b∫
a

(
fxx

ξx

)k

dx, (2.22)

can be treated as a variational integral. The corresponding Euler–Lagrange equation for
minimization of the above integral is directly solvable:

ξ(x) =
∫ x

a ( fxx)
k/(k+1) dx∫ b

a ( fxx)k/(k+1) dx
. (2.23)
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If k→+∞, then Eq. (2.23) converts to Eq. (2.19). Therefore, the optimal mapping Eq.
(2.19) minimizes theL∞ norm of the leading truncation error term. Note that on the optimal
grid Eq. (2.19), the leading truncation error term is equidistributed throughout the field, so
that

T1(x) = C11ξ

b∫
a

fxx dx = const. (2.24)

2.2. Second-Order Approximation, p= 2

If both fξ andxξ are evaluated identically by a second-order accurate formula, the grid
adaptation equation (2.13) written forp = 2 becomes

fξξξ xξ − fξ xξξξ = O(1ξ)x2
ξ . (2.25)

The derivatives in Eq. (2.25) can be transformed from the computational space to the
physical space as follows:

fξ = fxxξ

fξξξ = fxxxx3
ξ + 3 fxxxξ xξξ + fxxξξξ .

(2.26)

Substituting Eq. (2.26) into Eq. (2.25) yields

fxxxx
2
ξ + 3 fxxxξξ = O(1ξ). (2.27)

By using the following expressions for the metric coefficient and its derivative,

xξ = 1

ξx

xξξ = −ξxx

ξ3
x

,

and assuming thatfxx 6= 0, ∀x ∈ [a, b], Eq. (2.27) can be rewritten as

fxxx

fxx
= 3

ξxx

ξx
+ O(1ξ)

ξ2
x

fxx
. (2.28)

Because a decrease in the last term in the above equation increases the approximation
accuracy, one neglects theO(1ξ) term and integrates the left and right-hand sides of Eq.
(2.28) with respect tox to give

ξ3
x = C fxx, (2.29)

whereC is a constant of the integration. Equation (2.29) has one real and two complex
roots. Since only real roots are of interest the complex roots are not considered. Taking into
account the boundary conditions (2.2), the above equation can readily be integrated, which
gives

ξ(x) =
∫ x

a ( fxx)
1/3 dx∫ b

a ( fxx)1/3 dx
. (2.30)
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If a grid is generated in accordance with the optimal mapping (2.30), the leading term of the
truncation error is zero for all points in [a, b], and the global order of accuracy is increased
from 2 to 3.

The optimal grid point distribution defined by Eq. (2.30) can be applied iffxx is a pos-
itive function; otherwise the mapping becomes singular, which leads to grid degeneration.
However, this problem can be overcome. For that purpose the interval [a, b] is divided
at subintervals wherefxx is of constant signs. Letx−1 < x < x−2 be an interval where the
second derivative is negative: i.e.,fxx = −| fxx| < 0. Then, Eq. (2.30) becomes

ξ(x) =
∫ x

x−1
( fxx)

1/3 dx∫ x−2
x−1
( fxx)1/3 dx

=
− ∫ x

x−1
| fxx|1/3 dx

− ∫ x−2
x−1
| fxx|1/3 dx

=
∫ x

x−1
| fxx|1/3 dx∫ x−2

x−1
| fxx|1/3 dx

. (2.31)

From Eq. (2.31) it follows that the metric coefficientξx given by Eq. (2.30) is strictly positive
in the interval wherefxx is negative. Taking into account the fact that the same formula
(2.31) remains valid for positivefxx, the intervals of positive and negative signs, except for
the inflection points of the functionf (x), can be joined so that

ξ(x) =
∑

j

∫ x
xj+0 | fxx|1/3 dx∑

j

∫ xj+1−0
xj+0 | fxx|1/3 dx

, ∀x : x 6= xj , (2.32)

wherexj are the inflection points off (x). To add the inflection pointsfxx(xj ) = 0 to the
above integrals, special consideration is required.

Let x0 be a point of inflection of the functionf (x): i.e., fxx(x0) = 0. Note that if the
function f (x) is modified by adding an arbitrary linear function, the optimal grid (2.30)
remains unchanged. Furthermore, if the functionf (x) is linear in the whole interval [a, b],
then from Eq. (2.29) it follows thatξx = 0, ∀x ∈ [a, b]. This condition results in the grid step
size in the physical domain1x = 1ξ/ξx tending to infinity, which in turn can be interpreted
that an arbitrary large grid spacing can be used to approximate the first derivative of the
linear function exactly. Expandingfxx in a Taylor series aboutx = x0 in Eq. (2.30) and
assuming thatfxxx(x0) 6= 0 yields

fxx(x) = fxxx(x0)(x − x0)+ O((x − x0)
2).

Substituting the above expression in Eq. (2.30) and neglecting bothO((x − x0)
2)and higher

order terms gives

ξ3
x = C fxxx(x0)(x − x0). (2.33)

Letting x→ x0 results in

ξx(x0) = lim
x→x0

(C fxxx(x0)(x − x0))
1/3 = 0.

As noted above, this kind of grid degeneration when the metric coefficientξx vanishes does
not impose any restriction on the grid step size at the inflection point. Therefore, in the
vicinity of the inflection point, the original second derivativefxx can be modified to

f̃ xx(x) =
 | fxx|, | fxx| ≥ ε

f 2
xx+ ε2

2ε , | fxx| < ε
, (2.34)
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whereε is a small positive parameter. Equation (2.34) provides that the metric coefficient
ξx is a smooth function in the entire physical domain. Note that the results obtained in the
foregoing section (forp = 1) remain valid if fxx is replaced byf̃ xx.

From the above consideration, it follows that for an arbitraryf ∈ C2[a, b] the optimal
mapping that minimizes the leading truncation error term globally is

ξ̃ (x) =
∫ x

a ( f̃ xx)
1/3 dx∫ b

a ( f̃ xx)1/3 dx
. (2.35)

To estimate the asymptotic truncation error of the second-order difference expression for
fx on the optimal grid (2.30), Eq. (2.8) is rewritten to include the third-order terms:

Lh( fx) =
fξ + C21ξ

2 fξξξ + C31ξ
3 f (4)ξ

xξ + C21ξ2xξξξ + C31ξ3x(4)ξ
+ O(1ξ4). (2.36)

By linearizing Eq. (2.36) and collecting the terms ofO(1ξ2) and O(1ξ3), the first two
terms in the truncation error are

T2(x) = C2
1ξ2

x2
ξ

[ fξξξ xξ − xξξξ fξ ] + C3
1ξ3

x2
ξ

[
f (4)ξ xξ − x(4)ξ fξ

]
. (2.37)

Because the first term on the right-hand side of Eq. (2.37) vanishes on the optimal grid
defined by Eq. (2.30), the asymptotic truncation error becomes

T2(x) = C3
1ξ3

x2
ξ

[
f (4)ξ xξ − x(4)ξ fξ

]
. (2.38)

To determine the expression in the square brackets, Eq. (2.14) written forp = 2 is differ-
entiated with respect toξ . Thus,

f (4)ξ xξ + fξξξ xξξ − fξξ xξξξ − x(4)ξ fξ = 0. (2.39)

Resolving Eq. (2.14) with respect tofξξξ and substituting it in Eq. (2.39) gives

f (4)ξ xξ − x(4)ξ fξ = xξξξ x
2
ξ fxx. (2.40)

With Eq. (2.40), the leading truncation error term on the optimal grid (2.30) can be recast
as

T2(x) = C31ξ
3xξξξ fxx. (2.41)

For the optimal grid, Eq. (2.30) holds. Taking that fact into account,xξξξ can be represented
in terms of the functionf (x) and its derivatives as follows:

xξξξ = 3ξ2
xx − ξxxxξx

ξ5
x

= 5 f 2
xxx− 3 f (4)x fxx

9C3 f 3
xx

, (2.42)
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whereC is the integration constant in Eq. (2.29). By substituting Eq. (2.42) into Eq. (2.41)
the leading truncation error term is given by

T2(x) = C31ξ
3 5 f 2

xxx− 3 f (4)x fxx

9C3 f 2
xx

. (2.43)

This formula, which is valid for all points from the interval [a, b] except for the inflection
points of the functionf (x), shows that the error is not equidistributed on the optimal grid.

Let us estimate the leading term of the truncation error at a point of inflectionx0 :
fxx(x0) = 0. Because the second derivativefxx has been modified in the neighborhood of
the inflection point, as defined by Eq. (2.34), the second-order term in the truncation error
does not vanish. Substituting Eq. (2.34) into Eq. (2.37) and neglecting higher order terms
gives

T2(x0) = C21ξ
2− fxx f̃ xxx( f̃ xx)

−2/3+ ( f̃ xx)
1/3 fxxx

f̃ xx
.

Letting x→ x0 yields

T2(x0) = C21ξ
2 fxxx(x0)

(ε/2)2/3
. (2.44)

Equation (2.44) shows that locally, near the inflection point, only the second order of ap-
proximation can be obtained on the optimal grid. However, if the functionf (x) is linear, any
second-order accurate approximation offξ andxξ in Eq. (2.5) on an arbitrary nonuniform
mesh gives the exact value offx. By virtue of the fact that the number of inflection points
is finite, theLk(k < K < +∞) norm of the second-order accurate approximation offx on
the optimal grid should provide superconvergent results.

In regions where the functionf (x) is discontinuous, the above reasoning is not valid
because the first and higher derivatives do not exist there. In contrast to the inflection point,
in the vicinity of local extrema off (x), where f̃ xx achieves its maximum value, the fraction
in Eq. (2.43) becomes very small, so that locally, an even higher order of accuracy may be
obtained.

Remark 2.1. It can readily be checked that standard grid adaptation criteria such as the
arc length of the functionf (x) and the second derivativefxx do not globally minimize the
leading term of the truncation error. Actually, with the arc length grid adaptation criterion
the following grid point distribution is obtained:

ξ(x) =
∫ x

a

√
1+ f 2

x dx∫ b
a

√
1+ f 2

x dx
. (2.45)

Substituting Eq. (2.45) into Eq. (2.37) yields

T2(x) = C21ξ
2−3 fx f 2

xx +
(
1+ f 2

x

)
fxxx(

1+ f 2
x

)2 . (2.46)
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The comparison of Eq. (2.46) with the leading term of the truncation error obtained on a
uniform grid, which is

Tun
2 (x) = C21ξ

2 fxxx,

shows that this grid point distribution may improve the accuracy locally near steep gradients
of the function f (x). At the same time, in regions wherefxx is much greater thanfx, e.g.,
near local extrema off (x), the actual order of approximation may deteriorate to 1 or even
less.

If instead of the arc length adaptation criterion one redistributes grid points in accordance
with the second derivativefxx, the leading term of the truncation error is

T2(x) = −C21ξ
2 2 fxxx

f 2
xx

. (2.47)

From the above formula it follows that in regions where| fxx| <
√

2, the local truncation
error (2.47) is always greater than the asymptotic truncation error on a uniform grid.

In summarizing what has been said above, the following conclusions can be drawn.
On the one hand, the standard grid adaptation criteria do not provide superconvergence.
On the other hand, although the standard grid adaptation techniques may locally improve
the accuracy of calculation, the global truncation error may become even larger than that
obtained on the corresponding uniform mesh. Despite the fact that the above derivation has
been performed for the second-order discretization, the same conclusion can be drawn for
higher order schemes.

Remark 2.2. An alternative method of solving Eq. (2.25) will now be described. Inte-
grating Eq. (2.25) by parts and neglecting theO(1ξ) term on the right-hand side yields

fξξ xξ − fξ xξξ = Ĉ, (2.48)

whereĈ is a constant of the integration. The above equation is closed by using the boundary
conditions (2.2).

In order to find the unknown constantĈ, Eq. (2.48) is rewritten in the following form:

x2
ξ

∂

∂ξ

(
fξ
xξ

)
= Ĉ. (2.49)

With

fxx = 1

xξ

∂

∂ξ

(
fξ
xξ

)
,

Eq. (2.49) is reduced to Eq. (2.29) and the constantĈ can easily be determined, yielding

Ĉ =
 b∫

a

( fxx)
1/3 dx

3

. (2.50)

The boundary value problem, Eqs. (2.48), (2.50), and (2.2), should be solved numerically.
If at some pointfξ and fξξ are equal to zero simultaneously, Eq. (2.48) degenerates. The
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problem can be overcome by modifying the derivativesfξ , fξξ and the constant̂C as

f̃ ξ = f̃ x

ξx
= f̃ x

(C̃ f̃ xx)1/3

f̃ ξξ = f̃ xxξx − ξxx f̃ x

ξ3
x

= 3( f̃ xx)
2− f̃ xxx f̃ x

C̃2/3( f̃ xx)5/3

C̃ =
 b∫

a

( f̃ xx)
1/3 dx

3

,

where f̃ xx is given by Eq. (2.34), and wherẽf xxx and f̃ x are calculated by differentiating
and integratingf̃ xx with respect tox, accordingly. Because the functioñf xx is strictly
positive in the entire computational domain, the first derivativef̃ ξ is a positive function as
well. These modifications make the Eq. (2.48) fully consistent with Eq. (2.35).

Note that there are several differential forms of the optimal grid generation equation. For
example, instead of integration of Eq. (2.25) by parts, Eq. (2.27) may be used to determine
the optimal grid point distribution. Because each of these differential equations has its
advantages and disadvantages, at the present time it is difficult to say which one is better.

2.3. High-Order Approximations, p≥ 3

If fξ andxξ are approximated identically by a third-order accurate formula, the optimal
grid generation equation written in operator form in the physical space is[

1

ξx

∂

∂x

]4

f − fx

[
1

ξx

∂

∂x

]4

x = 0. (2.51)

Performing the indicated differentiation yields

fxx
(
15ξ2

xx − 4ξxξxxx
)+ ξx

(−6ξxx fxxx+ ξx f (4)x

) = 0. (2.52)

Although the above equation is much more complicated than the analogous equation derived
for the second-order discretizations, Eq. (2.28), the solution of Eq. (2.52) will be constructed
in a similar form. On one hand, a solution in the form ofξ = g( fx), whereg is an arbitrary
function of fx, is not appropriate because in this case thef (4)x term in Eq. (2.52) cannot be
canceled. On the other hand, if a solution depends onfxxx or higher derivatives off (x),
the f (5)x term arises in the truncation error, and cannot be canceled. Therefore, the solution
of Eq. (2.52) is sought in a form similar to Eq. (2.29):

ξx = C( fxx)
α. (2.53)

With Eq. (2.53) substituted into Eq. (2.52), the leading truncation error term can be written
as

T3(x) = C31ξ
3

( fxx)1+2α

[
α(2− 11α) f 2

xxx+ (4α − 1) fxx f (4)x

]
. (2.54)

In contrast to the second-order discretization, for the third-order approximation the leading
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term of the truncation error does not vanish at anyα = const. Assuming that the parameter
α(x) is a function that weakly depends onx and setting the leading truncation error term
equal to zero yields the following quadratic equation forα(x):

α(x)(2− 11α(x)) f 2
xxx+ (4α(x)− 1) fxx f (4)x = 0. (2.55)

The solution of Eq. (2.55) is

α1,2 = 1

11
(1+ 2r (x)±

√
1− 7r (x)+ 4r (x)2), (2.56)

with

r (x) = fxx f (4)x

f 2
xxx

.

Without loss of generality it is assumed thatfxxx 6= 0. If fxxx = 0 then the solution of Eq.
(2.55) isα = 1/4. Note that the functionα(x) should be positive in the entire physical
domain; otherwise the mapping (2.53) withα < 0 concentrates grid points wheref (x) is
linear and makes the grid very coarse where the second derivativefxx is large. Because the
above analysis is valid if the functionα(x) depends slightly onx, α is constructed as

α(r ) =


1
11(1+ 2r +√1− 7r + 4r 2), r ≤ 0

− 48
343r

3+ 18
49r 2− 3

22r + 2
11, 0< r < 7

4

1
11(1+ 2r −√1− 7r + 4r 2), r ≥ 7

4

, (2.57)

where the polynomial in Eq. (2.57) has been chosen so thatα(r ) is a continuously differ-
entiable function ofr . A plot of α versusr is shown in Fig. 1. As can be seen in the figure,

FIG. 1. Parameterα for a third-order accurate discretization.
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the functionα(r ) is practically equal to 1/4 in the whole range ofr except for the interval
−1≤ r ≤ 3. Althoughα(r ) is quite smooth, the functionα(x)may be nonsmooth because
it depends onfxx, fxxx, and f (4)x , which are calculated numerically and may therefore be
oscillatory. In numerical applications the functionα(x) should be smoothed to meet the
requirements used for the derivation of Eq. (2.54).

Such a choice ofα(x) provides that the leading truncation error term is approximately
equal to zero in the entire physical domain. As follows from Eq. (2.53), the second derivative
fxx must be a positive function on [a, b]. Note that a general property of both Eq. (2.51) and
Eq. (2.14) is that ifξx is a solution of Eq. (2.51), then−ξx is a solution of Eq. (2.51) as well.
The same is true for the functionf (x) and its derivatives; i.e., if̂f xx = − fxx is substituted
into Eq. (2.51), the same equation is obtained in terms off̂ xx. Hence, the second derivative
fxx in Eq. (2.53) can be replaced with Eq. (2.34). Thus, iffξ andxξ are evaluated by the
same third-order accurate formula, the optimal grid point distribution, which minimizes the
leading term of the truncation error in the entire computational domain, is

ξ(x) =
∫ x

a ( f̃ xx)
α(x) dx∫ b

a ( f̃ xx)α(x) dx
, (2.58)

where f̃ xx andα(x) are defined by Eq. (2.34) and Eq. (2.57), respectively.
From the above analysis one can see that the same strategy used for the third-order

approximation can be applied to higher order discretizations. Actually, the leading term of
the truncation error for an arbitrarypth-order approximation offx is

Tp(ξ) = Cp1ξ
p

x2
ξ

(
f (p+1)
ξ xξ − fξ x

(p+1)
ξ

)
. (2.59)

With the following relations between theξ - andx-derivatives written in operator form,

∂

∂ξ
= 1

ξx

∂

∂x

∂n

∂ξn
=
[

1

ξx

∂

∂x

]n

,

the truncation error can be transformed into the physical space as follows:

Tp(x) = Cp1ξ
pξx

([
1

ξx

∂

∂x

]p+1

f − fx

[
1

ξx

∂

∂x

]p+1

x

)
. (2.60)

Expanding the power of the derivative operator yields[
1

ξx

∂

∂x

]p+1

f =
[[

1

ξx

∂

∂x

]
x

[
∂

∂x

]]p+1

f =
[

1

ξx

∂

∂x

]p+1

x
∂ f

∂x
+ (p+ 1)

[
1

ξx

∂

∂x

]p

x

×
[

1

ξx

∂

∂x

]
∂ f

∂x
+ · · · +

[
1

ξx

∂

∂x

]
x

[
1

ξx

∂

∂x

]p
∂ f

∂x
. (2.61)

Thus, the term withfx in Eq. (2.60) is canceled, and therefore the highest derivatives ofξ(x)
and f (x) in the truncation errorTp(x) areξ (p)x and f (p+1)

x , respectively. Assuming that on
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the optimal grid the leading term of the truncation error is of the order ofO(1ξ), ξ(x) should
be sought as a function off (x) and its derivatives. By comparing the highest derivatives of
ξ and f , one can observe that ifξx = g( f, fx), then the termf (p+1)

x in Eq. (2.61) is never
canceled, while ifξx is a function of f (n)x , n ≥ 3 the uncancelablef (n+p−1)

x term arises
in the truncation errorTp(x). In a manner similar to the first-, second-, and third-order
approximations, the optimal grid for thepth-order accurate discretization is sought in the
form of Eq. (2.53). By substituting Eq. (2.53) into Eq. (2.61) the leading truncation error
term becomes

Tp(x) = Cp1ξ
p

( fxx)pα

{
[1− α(p+ 1)] f (p+1)

x + αG
(
α, fxx, fxxx, . . . , f (p)x

)}
. (2.62)

The above formula takes into account the fact that the second term on the right-hand side is
proportional toα. This dependence is no surprise because forα = 0, which corresponds to a
uniform mesh, the asymptotic truncation errorTp(x) is reduced toCp1ξ

p f (p+1)
x ; therefore

all the terms in Eq. (2.62) except forf (p+1)
x have to be proportional toα. For example,

for fourth- and fifth-order discretizations the leading truncation error terms obtained on the
optimal grid (2.53) are

T4(x) = C41ξ
4

( fxx)4α

{
(1− 5α) f (5)x + α

[
−10α(1+ 5α)

f 3
xxx

f 2
xx

+ 5(9α − 1)
f (3)x f (4)x

fxx

]}
(2.63)

and

T5(x) = C51ξ
5

( fxx)5α

{
(1− 6α) f (6)x + α

[
(6+ 49α + 196α2+ 274α3)

f 4
xxx

f 3
xx

− (7+ 97α + 421α2)
f 2
xxx f (4)x

f 2
xx

+ 3(27α − 2)
f (3)x f (5)x

fxx
+ 2(26α − 1)

(
f (4)x

)2

fxx

]}
,

(2.64)

respectively. As follows from Eq. (2.62), at anyα = const the terms on the right-hand side
do not vanish simultaneously. To minimize the leading term of the truncation error the
following procedure is proposed. At each grid point the parameterα is found as the solution
of the nonlinear equationT(α) = 0, which is solved by Newton’s method. That choice of
α provides that the leading truncation error term vanishes on the optimal grid. Because the
above consideration is valid only ifα depends slightly onx, the functionα(x) must be
smoothed in numerical applications.

Remark 2.3. If p→+∞, i.e., if the order of approximation is infinitely large, the lead-
ing term of the truncation error (2.62) vanishes forα→ 0. In other words, the higher the
order of approximation used to evaluatefξ and xξ , the more uniform is the grid which
minimizes the leading truncation error term. At the limit of infinitely high-order approxi-
mations, a uniform grid is optimal in the sense of minimization of the asymptotic truncation
error.

Remark 2.4. In numerical calculations, the second derivativefxx is approximated nu-
merically and, therefore, depends on grid spacing in the physical domain. To improve the
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accuracy of the optimal mapping given by Eq. (2.58), the following iteration procedure can
be applied. At each grid point, the approximation of the second derivative can be updated
when the new grid point distribution is found. In its turn, the updated second derivative
generates a new optimal grid (Eq. (2.58)).

Let us show that this iteration technique is equivalent to the Picard iteration method (e.g.,
see [17]). Actually, withξx replaced by 1/xξ and Eq. (2.53) integrated with respect toξ ,
the following integral equation for the optimal mappingx(ξ) is obtained:

x(ξ) = a+ (b− a)

ξ∫
0

G(t, x) dt, (2.65)

with

G(t, x) = ( f̃ xx)
−α∫ 1

0 ( f̃ xx)−α dt
.

As follows from Eq. (2.34), the functionG is continuously differentiable∀x ∈ [a, b] and,
consequently, satisfies the Lipschitz condition. From this fact it follows that the inte-
gral operator Eq. (2.65) is contractive on [a, b] and maps [a, b] into itself. Therefore,
the iteration procedure based on Eq. (2.65) converges uniformly to the optimal mapping
x(ξ).

An alternative way of constructing the optimal grid, whenf (x) is given numerically, is
to interpolatef (x) by using piecewise polynomials. This interpolation results in that the
second derivativefxx in each grid cell can be calculated analytically. Consequently, the
optimal mapping Eq. (2.58) also can be calculated analytically. In contrast to the above
iterative technique, no iteration is required for this approach.

3. GRID ADAPTATION IN MULTIPLE DIMENSIONS

The present approach can be extended directly to multiple dimensions. In particular,
consider the three-dimensional transformation of the first derivative,

fx = zζ yη − yζ zη
J

fξ + yζ zξ − zζ yξ
J

fη + zηyξ − yηzξ
J

fζ , (3.1)

where the Jacobian of the mapping is given by

J = xξ yηzζ + xηyζ zξ + xζ yξzη − xξ yζ zη − xηyξzζ − xζ yηzξ .

The pth-, qth-, andr th-order finite difference approximations for theξ -, η-, andζ -deriva-
tives, respectively, yield

Lh( fx) = (δζ zδηy− δζ yδηz)δξ f + (δζ yδξz− δζ zδξ y)δη f + (δηzδξ y− δηyδξz)δζ f

δξ xδηyδζ z+ δηxδζ yδξz+ δζ xδξ yδηz− δξ xδζ yδηz− δηxδξ yδζ z− δζ xδηyδξz

+O(1ξ p+1,1ηq+1,1ζ r+1), (3.2)
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where the differential operatorsδξ , δη, andδζ are defined by

δξ = ∂

∂ξ
+ Cp1ξ

p ∂
p+1

∂ξ p+1

δη = ∂

∂η
+ Cq1η

q ∂
q+1

∂ηq+1

δζ = ∂

∂ζ
+ Cr1ζ

r ∂
r+1

∂ζ r+1
.

(3.3)

The constantsCp, Cq, andCr are dependent on particularpth-, qth-, andr th-order finite
difference approximations applied to discretize theξ -, η-, andζ -derivatives accordingly.
Equation (3.2) takes into account the fact that the metric coefficients are approximated by
the same finite difference expressions used for evaluatingfξ , fη, and fζ .

In view of the fact that the mapping used is nonsingular (J > 0), the denominator of
Eq. (3.2) can be linearized to give

Tp,q,r (ξ, η, ζ ) = 1

J

[
Cp1ξ

p
(
F̃ (p+1)
ξ − J̃(p+1)

ξ fx
)+ Cq1η

q
(
F̃ (q+1)
η − J̃(q+1)

η fx
)
(3.4)

+Cr1ζ
r
(
F̃ (r+1)
ζ − J̃(r+1)

ζ fx
)]
,

where

F̃ (p+1)
ξ = f (p+1)

ξ (zζ yη − yζ zη)+ y(p+1)
ξ (zη fζ − zζ fη)+ z(p+1)

ξ (yζ fη − yη fζ )

F̃ (q+1)
η = f (q+1)

η (zξ yζ − zζ yξ )+ y(q+1)
η (zζ fξ − zξ fζ )+ z(q+1)

η (yξ fζ − yζ fξ )

F̃ (r+1)
ζ = f (r+1)

ζ (zηyξ − yηzξ )+ y(r+1)
ζ (zξ fη − zη fξ )+ z(r+1)

ζ (yη fξ − yξ fη)

J̃(p+1)
ξ = x(p+1)

ξ (zζ yη − yζ zη)+ y(p+1)
ξ (zηxζ − zζ xη)+ z(p+1)

ξ (yζ xη − yηxζ )

J̃(q+1)
η = x(q+1)

η (zξ yζ − zζ yξ )+ y(q+1)
η (zζ xξ − zξ xζ )+ z(q+1)

η (yξ xζ − yζ xξ )

J̃(r+1)
ζ = x(r+1)

ζ (zηyξ − yηzξ )+ y(r+1)
ζ (zξ xη − zηxξ )+ z(r+1)

ζ (yηxξ − yξ xη).

(3.5)

The linearization has been performed under the assumptions

1ξ p
∣∣ J̃(p+1)

ξ

∣∣¿ J

1ηq
∣∣ J̃(q+1)

η

∣∣¿ J

1ζ r
∣∣ J̃(r+1)

ζ

∣∣¿ J,

which can be treated as conditions for the minimum number of grid points needed for the
approximation.

Similar to the 1D case described above, the leading term of the truncation error (3.4) can
be divided into two parts. The first part, which also exists on a uniform mesh, is due to the
approximation offξ , fη, and fζ . The second part, which vanishes on a uniform Cartesian
mesh, is caused by the evaluation of the metric coefficients. Equation (3.4) shows that if
a grid is constructed so that the first term in the parentheses is of the order ofO(1ξ),
the second term is of the order ofO(1η), and the third term is of the order ofO(1ζ)
for all ξ ∈ [0, 1], η ∈ [0, 1], andζ ∈ [0, 1], then the global order of approximation of the
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difference operator (3.2) inξ , η, andζ on the optimal grid is increased fromp, q, andr to
p+ 1,q + 1, andr + 1, respectively. Therefore, in the sense of minimization of the leading
truncation error term the grid adaptation criteria are

F̃ (p+1)
ξ − fx J̃(p+1)

ξ = O(1ξ)J (3.6)

F̃ (q+1)
η − fx J̃(q+1)

η = O(1η)J (3.7)

F̃ (r+1)
ζ − fx J̃(r+1)

ζ = O(1ζ)J. (3.8)

Note that the above equations are not a system of equations and can be considered separately.
If it is necessary to improve the accuracy with respect to theξ coordinate alone, a grid must
be generated such that only Eq. (3.6) holds. However, if increasing by one the order of
approximation offx in theξ , η, andζ coordinates simultaneously is desirable, then the grid
must obey the system of Eqs. (3.6)–(3.8).

The 3-D grid adaptation criteria (3.6)–(3.8) can be simplified. After the substitution of
Eq. (3.5) into Eqs. (3.6)–(3.8) and considerable algebraic manipulation, the grid adaptation
equations can be rewritten in very compact form,

(zζ yη − yζ zη)
(

f (p+1)
ξ − fxx(p+1)

ξ − fyy(p+1)
ξ − fzz

(p+1)
ξ

) = O(1ξ)J

(yζ zξ − zζ yξ )
(

f (q+1)
η − fxx(q+1)

η − fyy(q+1)
η − fzz(q+1)

η

) = O(1η)J

(zηyξ − yηzξ )
(

f (r+1)
ζ − fxx(r+1)

ζ − fyy(r+1)
ζ − fzz

(r+1)
ζ

) = O(1ζ)J,

(3.9)

where fx, fy, and fz are the first derivatives with respect to thex, y, andz coordinates,
respectively. One of the characteristic features of the above equations is that they do not
depend on the coefficientsCp, Cq, andCr . Consequently, if in each spatial direction the
metric coefficients and the first derivatives off (ξ, η, ζ ) are evaluated consistently by some
hybrid finite difference operators, then the grid adaptation criteria (3.9) can be applied in
the whole computational domain regardless of points where the hybrid scheme switches
from one approximation to another. In the 2-D case wherezξ = zη = 0, zζ = 1, the 3-D
grid adaptation criteria (3.9) are reduced to

yη
[

f (p+1)
ξ − fyy(p+1)

ξ − fxx(p+1)
ξ

] = O(1ξ)J
(3.10)

−yξ
[

f (q+1)
η − fyy(q+1)

η − fxx(q+1)
η

] = O(1η)J.

If, in addition to these conditions,yξ = yζ = 0, yη = 1 are imposed, Eqs. (3.9) are reduced
to the 1-D optimal grid generation equation (Eq. 2.13). Similar to Eq. (2.13), Eqs. (3.9) and
(3.10) can be proved to be invariant with respect to stretching and to translation of both the
physical and computational coordinates. Note especially that because all the grid adaptation
criteria, Eqs. (2.13), (3.9), and (3.10), have been obtained in theL∞ norm, these criteria
remain valid in anyLk norm.

As follows from the analysis presented in the foregoing section, the grid adaptation
equation does not ensure that the coordinate mapping obtained as the solution of Eq. (2.14)
is not singular. The singular mapping means that eitherJ ≤ 0 or J →+∞. Because Eq.
(3.9) is converted to Eq. (3.10) and in its turn Eq. (3.10) is reduced to Eq. (2.14) if the
dimension of the space is decreased by 1, the same singularity may occur in two and three
dimensions as well.
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Equations (3.9) and (3.10) must be closed by corresponding boundary conditions. Similar
to the 1-D case, these equations can be shown to bepth-order partial differential equations.
Therefore, for each equation in Eq. (3.9),p boundary conditions should be imposed at each
pair of the opposite boundaries (i.e.,ξ = 0 andξ = 1, η = 0 andη = 1, ζ = 0 andζ = 1)
to find the unique solution. However, at each boundary only one boundary condition is
available. For example, in the 3-D case in theξ coordinate, the boundary conditions are

ξ(x, y, z) = 0, ξ(x, y, z) = 1. (3.11)

In other words Eq. (3.9) and Eq. (3.10) are not closed. The situation becomes even more
uncertain when only one of the grid adaptation criteria is used. However, this uncertainty
gives additional degrees of freedom, and at the same time it is conceivable that there exists
more than one optimal grid that satisfies the criteria (3.9) or (3.10). From this standpoint,
both Eq. (3.10) and Eq. (3.9) should be treated as the grid adaptation criteria rather than the
optimal grid generation equations.

One of the most general structured grid generation strategies is based on the variational
approach proposed by Brackbill and Saltzmann [18]. In this method a grid is generated
as the solution of the minimization problem. By forming the variational principle with a
linear combination of the integral measures of smoothness, orthogonality, and adaptation, a
system of elliptic equations is derived. The new grid adaptation criteria can be incorporated
into this approach by constructing an integral measure of adaptation so that the Euler–
Lagrange equations associated with the minimization of this integral alone give Eq. (3.9).
On one hand, the minimax principle guarantees that the coordinate mapping obtained as
the solution of this minimization problem is not singular [19]. On the other hand, the new
grid adaptation criteria provide that the leading term of the truncation error is minimized
so that the finite difference approximation Eq. (3.2) calculated on the optimal grid exhibits
superconvergence properties.

Remark 3.1. In spite of the fact that the present analysis has been performed for the first
derivative fx, it can be directly extended to an equation or a system of equations, which can
be represented as

fx(u) = g(x), (3.12)

whereg(x) is a given function. For example, the steady-state 1-D Burgers equation written
in conservation law form is

∂

∂x

(
u2

2
− µ∂u

∂x

)
= 0, (3.13)

whereµ is a positive constant. A comparison of Eq. (3.13) andfx shows that for the Burgers
equation the optimal grid can be constructed by using Eq. (2.58) with

f (x) = u2

2
− µ∂u

∂x
. (3.14)

It should be pointed out that the above conclusion is valid if the second derivativeuxx =
(ux)x and the convective term(u2/2)x are approximated consistently.

In real numerical applications, the exact analytical solution is unknown. The problem
can be overcome by using the numerical solution, which approximates the exact solution,



MINIMIZATION OF ERROR BY GRID ADAPTATION 479

to build the monitor functionf (x). As mentioned earlier, because of the presence of the
O(1ξ) term on the right-hand side of Eq. (2.13), the optimal grid is rather stable to pertur-
bations caused by numerical approximation of Eq. (2.58). The same conclusion is drawn
for the multidimensional grid adaptation criteria. Therefore, one can say with reasonable
confidence that the optimal grid generated by using the numerical solution should preserve
its superconvergence property. An analogous technique is applied to unsteady problems. To
generate the optimal grid at each time step, the unknown monitor function can be constructed
by using the numerical solution taken from the previous time step.

The same approach can be applied to the Euler and Navier–Stokes equations. The 1-D
Euler and Navier–Stokes equations can be written in conservation law form as

∂F
∂x
= 0, (3.15)

where for the Euler equationsF is the inviscid fluxFin and for the Navier–Stokes equations
F is the inviscid flux minus the viscous fluxFin − Fvis.

As follows from Eq. (3.9), any component of the vectorF can be chosen as a function
with respect to which a grid is adapted. Although that choice provides increase in accuracy
for this particular vector component, it may not result in decrease in the truncation error
for the remaining vector components. In fact, as many components as the vectorF has,
that many optimal grids can be generated. Since the different vector components may have
strong gradients and local extrema in different regions of the physical domain, this kind of
grid adaptation is not effective. In such a case the monitor functionf (x) can be obtained
by using the method of least squares. Because the optimal grid generation equations are
invariant with respect to stretching of the functionf (x) and its derivatives, the second
derivatives ofFn, n = 1, N can be normalized as

F̃n
xx(x) =

∣∣Fn
xx

∣∣
max

x

∣∣Fn
xx

∣∣ . (3.16)

The result is that all of the vector components are of the same order and, consequently,
make proportional contributions to the second derivativefxx used to generate the optimal
grid (Eq. (2.58)). The resulting functionfxx is obtained as the solution of the minimization
problem,

I∑
i=0

N∑
n=1

[
F̃n

xx(xi )− fxx(xi )
]2→ min (3.17)

in the least squares sense. The functionfxx constructed in this fashion allows one to generate
a grid which is optimal for the whole vectorF rather than for its particular component. Note
that the power in Eq. (3.17) should be chosen in accordance with the power of theLk norm
in which the solution of the Euler or Navier–Stokes equations is sought.

4. RESULTS AND DISCUSSION

To validate the applicability and efficiency of the new method, several 1-D and one 2-D
test examples are considered. For each 1-D test function, five series of calculations have
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been executed on different grids with the same number of grid points. The first calculation
is done on a uniform grid; the second uses the standard grid adaptation criterion based
on the arc length or the second derivative of the test function; the third is performed on
the optimal grid obtained as the analytical solution of Eq. (2.14); the fourth employs the
optimal grid (2.58) generated numerically by using the following approximation for the
second derivative:

( fxx)i = hi fi+1− (hi + hi+1) fi + hi+1 fi−1

hi hi+1(hi + hi+1)/2
, hi = xi − xi−1. (4.1)

This formula is reduced to the second-order three-point central approximation offxx if an
equispaced grid in the physical domain is used. The integrals in Eq. (2.58) are computed
with trapezoidal rule integration. As a result of this integration, the strictly increasing
function ξ(x) is obtained and is then reversed by using a third-order accurate piecewise
spline interpolation. The fifth calculation is also executed on the uniform grid; however,
instead of apth-order approximation, a(p+ 1)th-order accurate discretization is applied
to calculate bothfξ andxξ . At each boundary, one-sidedpth-order differences are used for
fξ andxξ .

To estimate the accuracy of the method, thepth-order finite difference approximation of
fx is compared with the exact value of the first derivative calculated at the same grid node
in theL2 norm. The order of approximation is estimated on successively refined grids, the
coarsest of which contains 20 cells and the finest 2560 cells.

4.1. 1-D Test Examples

Second-order approximation, p= 2. The first test example is an evaluation of the first
derivative of f (x) = xm, 0≤ x ≤ 1 by using a second-order central difference forfξ and
xξ . Whenm is sufficiently large, this function has a boundary layer of widthO(1/m) near
x = 1. For this test case, the exact optimal grid point distribution defined by Eq. (2.25) can
be found analytically:

xopt(ξ) = ξ 3
m+1 . (4.2)

In contrast to [9] the new grid adaptation criterion provides the concentration of grid nodes
near the boundary layer of the functionf (x).

An error convergence plot for this test function (m= 23) is presented in Fig. 2. As one
might expect, theL2 norm of the truncation error calculated on a uniform grid exhibits the
O(1ξ2) convergence rate that is consistent with the second order of accuracy of the central
differences. However, the same second-order approximation offx on the optimal grid (4.2)
exhibits the convergence rate which is higher thanO(1ξ3). Although the accuracy offx

obtained on the adaptive grid (2.30) withfxx evaluated by Eq. (4.1) is slightly less compared
to results of the optimal grid (4.2), the order of approximation is about 3.5. To show the
superiority of the present method over the standard grid adaptation criterion (2.45), the
truncation error that is calculated on grids adapted in accordance with the arc length of
f (x) is also shown in Fig. 2. In spite of the fact that the standard grid adaptation technique
slightly improves the accuracy of calculation in comparison with the equispaced grid point
distribution, the convergence rate is less thanO(1ξ2). The fact should be emphasized that
the new grid adaptation criterion (2.30) not only provides superconvergent results, but as
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FIG. 2. Error convergence for a second-order approximation offx of f (x) = xm, calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the
arc length criterion, and (5) uniform grid with third-order accurate discretization.

compared with the uniform grid results on the finest mesh, reduces the error by six orders
of magnitude.

An advantage of the consistent grid adaptation (2.14), which is based on the fact that the
truncation errors resulting from the approximations offξ andxξ cancel each other, becomes
obvious when the optimal grid results are compared with those obtained by using a third-
order accurate approximation on a uniform grid. Figure 2 shows that both the second-order
approximation on the optimal grid and the third-order discretization on the uniform grid
with the same number of grid points have theO(1ξ3) convergence rate. However, the
optimal grid results are about 103 times more accurate.

Note that the optimal grid (Eq. (4.2)) is essentially nonsmooth and does not meet the
standard criterion of smoothness, which is|xξξ /xξ | < O(1) [19]. Furthermore, the optimal
mapping (4.2) is singular at the pointξ = 0 wherexξ →∞. In spite of this fact, the above
comparisons corroborate the theoretical analysis and demonstrate the advantage of the new
grid adaptation criterion over the standard approaches.

Another very useful characteristic feature of the new method is its generality, in the
sense that, if a single second-order hybrid discretization is used for bothfξ and xξ , the
same optimal mapping (4.2) minimizes the leading truncation error term. To demonstrate
this property, the error convergence of the hybrid approximation obtained on the uniform
and optimal grids with the same number of grid points are depicted in Fig. 3. The hybrid
difference operator is constructed as follows:

(
∂ f

∂ξ

)
i

=
{ 1

21ξ ( fi+1− fi−1), i even

1
21ξ (−3 fi + 4 fi+1− fi+2), i odd.

(4.3)
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FIG. 3. Error convergence of a second-order hybrid approximation offx of f (x) = xm, calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

The identical approximation is employed for the metric coefficientxξ . A comparison shows
that the global order of the consistent approximation offξ and xξ is increased by 1 on
the same optimal grid (4.2) used for the nonhybrid approximation. As has been shown in
Section 2, the approximation of the metric coefficient and the first derivativefξ should
be the same; otherwise the optimal mapping defined by Eq. (2.30) does not minimize the
leading truncation error term. To show that the discretization of the metric coefficient plays
a crucial role in reduction of the truncation error, a two-point central difference expression is
used to approximatexξ in the whole computational domain, while the same hybrid scheme
(4.3) is used forfξ . An error convergence plot for this inconsistent approximation, which
is also depicted in Fig. 3, shows that if the metric coefficient is evaluated in a different
way than fξ , the order of approximation on the optimal grid deteriorates to 2. Also, Fig. 3
shows that the truncation error increases by a factor of 103 in comparison with the consistent
discretization results.

The second test function considered is

f (x) = 1

(em − 1)x + 1
, 0≤ x ≤ 1. (4.4)

In the present test example, the parametermwas chosen to be 5. This function has a boundary
layer of width O(m/(em − 1)) at x = 0. For this function the optimal grid generation
equation (Eq. 2.14), which depends on the order of approximation rather than on a particular
type of discretization, can be solved analytically, yielding

xopt(ξ) = emξ − 1

em − 1
. (4.5)

It should be emphasized that Eq. (2.30) yields the same optimal mapping as Eq. (4.5).
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FIG. 4. Error convergence for a second-order approximation offx of Eq. (4.4), calculated on (1) uniform grid,
(2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the arc
length criterion, (5) uniform grid with third-order accurate discretization, and (6) numerical optimal grid generated
iteratively.

The optimal grid (4.5) is the well-known exponential coordinate transformation, which is
widely used in the literature (e.g., [1, 9]) for solving boundary layer problems. However,
the mapping (4.5) is optimal only for a special class of functions, such as Eq. (4.4), and not
optimal for other functions. Similar to Figs. 2 and 3, error convergence plots for the second-
order symmetric and hybrid discretizations (4.3) are depicted in Figs. 4 and 5, respectively.
These figures show that the error obtained on the optimal grid has a convergence rate
of O(1ξ3.5) that is even higher than follows from the theoretical analysis. The optimal
grid point distribution constructed by the numerical integration of Eq. (2.30) reduces the
truncation error by about four orders of magnitude compared to the uniform grid results, but
does not provide the same accuracy as the optimal grid (4.5). The accuracy can be improved
if the iteration procedure described in Remark 2.4 is applied. For this test problem, 15
to 20 iterations were needed to reach convergence. No attempt was made to optimize the
iteration process. Referring to Fig. 4 one can see that this procedure considerably increases
the accuracy and provides practically the same convergence rate as the analytical optimal
grid (4.5).

The importance of the metric coefficient evaluation is illustrated in Fig. 5. Analogous to
the foregoing test case, the inconsistent discretization offξ andxξ leads to decreases in
both the order and accuracy of the approximation. When the metric coefficient and the first
derivative fξ are evaluated by using the same hybrid operator (4.3), the convergence rate
obtained on the optimal grid (4.5) becomesO(1ξ3).

From the present theoretical analysis it follows that the new grid adaptation strategy
may be quite sensitive to the inflection points of the functionf (x). In order to verify this
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FIG. 5. Error convergence of a second-order hybrid approximation offx of Eq. (4.4), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

conclusion, the following function,

f (x) = 1

36m2
[sin(3mx)− 27 sin(mx)] , 0≤ x ≤ π, (4.6)

which hasm inflection points, has been chosen as a test function. Despite the presence of the
inflection points wherefxx = 0, it is possible to construct the optimal mapping analytically
without using Eq. (2.34). It can be done if the optimal grid (2.30) is generated in each
interval of constant signs offxx separately:

xopt(ξ) = π

m
( j − 1)+ 1

m
arccos[2 j − 2mξ − 1] ,

j − 1

m
≤ ξ ≤ j

m
, j = 1,m. (4.7)

In numerical calculations the parameterm was taken to be 5. The above optimal coordi-
nate transformation obeys Eq. (2.30) in the entire physical domain except at the inflection
points.

Figures 6 and 7 are analogous to Figs. 2 and 3, accordingly. As one can see in Fig. 6,
the presence of the inflection points results in the convergence rate beingO(1ξ2.5), which
is lower than predicted by the theoretical analysis. Nevertheless, the optimal grid adapta-
tion reduces the truncation error by a factor of 20 in comparison with the uniform grid
results. One of the reasons for such a behavior is that high-order derivatives of the function
f (x) in Eq. (4.6) are well bounded, which makes the approximation offx on the uniform
grid sufficiently accurate. The use of the standard grid adaptation criterion based onf̃ xx

(Eq. (2.34)) leads to deterioration of the convergence rate toO(1ξ1.5), and at the same
time theL2 norm of the truncation error is about 50 times less accurate than the uniform
grid results. Figure 7 shows that the inconsistent approximation offξ andxξ increases the
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FIG. 6. Error convergence for a second-order approximation offx of Eq. (4.6), calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the
f̃ xx criterion, and (5) uniform grid with third-order accurate discretization.

FIG. 7. Error convergence of a second-order hybrid approximation offx of Eq. (4.6), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.
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FIG. 8. Pointwise error distribution for a second-order approximation offx of Eq. (4.6), calculated on the
analytical optimal, numerical optimal, and corresponding uniform grids.

truncation error by five orders of magnitude in comparison with the consistent approxima-
tion results calculated on the optimal grid.

To give greater insight into where the maximum error occurs, pointwise error distribu-
tions obtained on both the uniform and optimal grids are shown in Fig. 8. As expected,
the truncation error calculated on the optimal grid achieves its maximum values at the in-
flection points, while the maximum error on the uniform grid occurs at points where the
third derivative| fxxx| is large. In contrast to the uniform grid, the most accurate approx-
imation of the first derivativefx on the optimal grid is near the local extrema off (x).
Using Eq. (2.34) instead offxx results in a gain in accuracy in the vicinity of the in-
flection points. Figure 8 presents a pointwise error plot obtained by this method as well.
The error distribution obtained on the optimal grid is essentially nonuniform, which gives
an indication of the difference between the present and equidistribution grid adaptation
criteria.

From the practical point of view, it is very important to improve the accuracy of calculation
when the functionf (x) has an interior layer. In this test example, the function

f (x) = 2εx
[
17+ 73(εx)2+ 55(εx)4+ 15(εx)6

]
15π [1+ (εx)2]4

+ 2

π
arctan(εx), −1≤ x ≤ 1 (4.8)

is considered. In the calculations, the parameterε was taken to be 103, which results in the
function (4.8) having a pronounced interior layer of widthO(1/ε)atx = 0. This function has
been chosen so that the optimal grid point distribution (2.30) can be integrated analytically.
As in the foregoing example, the singularity (xξ →+∞) in the optimal mapping (2.30),
resulting from the inflection point atx = 0, can be overcome by generating the optimal grid
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FIG. 9. Error convergence for a second-order approximation offx of Eq. (4.8), calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the
arc length criterion, and (5) uniform grid with third-order accurate discretization.

in the−0.5≤ x < 0 and 0≤ x ≤ 0.5 intervals separately, which gives

xopt(ξ) =


−
√

1− 2ξ
1+ 2ε2ξ

, 0≤ ξ < 0.5√
2ξ − 1

1+ 2ε2(1−ξ) , 0.5≤ ξ ≤ 1.
(4.9)

In Fig. 9 the error convergence of the symmetric second-order discretization offx evalu-
ated on the optimal grid (4.9) is compared with results obtained by second- and third-order
approximations on a uniform grid. Figure 9 also shows the truncation error calculated on
grids generated by using the standard (2.45) and new (2.30), (2.34) grid adaptation criteria.
Because the internal layer thickness is comparable with the finest grid spacing, none of the
uniform grids considered can provide second-order results. For the analytical optimal grid,
the convergence rate is of the order ofO(1ξ2.5). Although it is less than the theoretical
limit, the truncation error on the finest mesh (2560 cells) has been reduced by more than
five orders of magnitude compared to the uniform grid results. The standard grid adaptation
criterion (Eq. (2.45)), which is widely used to improve the resolution of steep gradients of
the solution, does not provide the cancellation of the leading truncation error term. There-
fore, these results are about two orders of magnitude less accurate than those obtained on
the optimal grid (2.30), (4.1), (2.34), as is evident in Fig. 9.

A comparison of the hybrid approximation (4.3) on different grids and with different
approximations for the metric coefficientxξ is presented in Fig. 10. Iffξ andxξ are evaluated
identically, the same optimal grid (4.9) provides superconvergent results, while if these
approximations are different, the convergence rate is even less thanO(1ξ2).
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FIG. 10. Error convergence of a second-order hybrid approximation offx of Eq. (4.8), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

High-order approximations, p≥ 3. For a third-order discretization the optimal grid
generation equation, (2.55), cannot be solved analytically; however, the solution can be
found in the approximate form of Eqs. (2.57) and (2.58). The same function (4.4), used
in the second example, is taken as a test function. The first derivativefξ and the metric
coefficient are evaluated by a third-order accurate formula as

(gξ )i = 1

61ξ
(−2gi−1− 3gi + 6gi+1− gi+2) , (4.10)

whereg(ξ) is either f (ξ) or x(ξ).
Figure 11 shows error convergence plots obtained on the optimal (2.57), (2.58), and uni-

form grids with the same number of grid cells. Although for the mapping (2.57), (2.58),
the leading term of the truncation error is approximately equal to zero, the error conver-
gence rate obtained on the optimal grid is aboutO(1ξ3.8), which corroborates the the-
oretical results. Note that the same iterative technique used earlier for the second-order
approximations can be applied in the present case as well. However, because of the fact
that the optimal coordinate transformation (2.57), (2.58) is the approximate solution of
Eq. (2.55), the iterations do not practically improve the accuracy of calculation. Therefore,
the results are not presented here.

The truncation error can be reduced if the optimal grid generation equation (2.52) is solved
numerically. To avoid the solution of the third-order differential equation, a new dependent
variable,u(x) = ξx, is introduced. Then Eq. (2.52), which is a second-order differential
equation in terms ofu(x), is integrated numerically on a uniform grid constructed in the
physical domain. To close Eq. (2.52), the metric coefficientξx is taken to be proportional
to ( f̃ xx)

1/4 at the boundaries. The metric coefficientξx found in this way is integrated, and
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FIG. 11. Error convergence for a third-order approximation offx of Eq. (4.4), calculated on (1) uniform grid,
(2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with thef̃ xx

criterion, and (5) uniform grid with fourth-order accurate discretization.

the optimal grid point distribution is obtained by a third-order accurate piecewise spline
interpolation of the functionξ(x). As one can see in Fig. 11, these optimal grid results
exhibit a convergence rate of essentiallyO(1ξ4) and provide higher accuracy than results
calculated on the optimal grid (2.57), (2.58).

To demonstrate the superiority of the optimal grid adaptation over the equispaced grid
point distribution, an error convergence plot of a symmetric fourth-order accurate approx-
imation of fx, calculated on a uniform grid with the same number of grid points, is also
depicted in Fig. 11. TheL2 norm of the truncation error of the third-order approximation
(4.10) on the optimal grid is reduced by a factor of several hundred in comparison with the
fourth-order accurate results obtained on the uniform grid.

Error convergence plots for the following hybrid approximation,

(
∂ f

∂ξ

)
i

=


1
61ξ (−2 fi−1− 3 fi + 6 fi+1− fi+2) , i even

1
61ξ (−11 fi + 18 fi+1− 9 fi+2+ 2 fi+3) , i odd

, (4.11)

calculated on the optimal and corresponding uniform grids, are shown in Fig. 12. The optimal
grid results are about four to five orders of magnitude more accurate than those obtained on
the finest uniform grid. However, if the metric coefficient is evaluated by Eq. (4.10) in the
entire computational domain while the approximation offξ remains the same Eq. (4.11), the
error convergence rate of this inconsistent discretization becomes even less thanO(1ξ3)

as the grid is refined.
The next test example is a fourth-order accurate approximation of the first derivative

of the function f (x) = xm, where the parameterm has been chosen to be 49. The first
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FIG. 12. Error convergence of a third-order hybrid approximation offx of Eq. (4.4), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

derivativesfξ andxξ are discretized by a five-point symmetric approximation,

(gξ )i = 1

121ξ
(gi−2− 8gi−1+ 8gi+1− gi+2) , (4.12)

whereg(ξ) is either f (ξ) or x(ξ). If the order of approximationp is an even number, then
for f (x) = xm the optimal grid generation of Eq. (2.14) can be solved analytically:

xopt(ξ) = ξ
p+1
m+1 . (4.13)

The above mapping is optimal in the sense of the minimization of the leading truncation
error term ifm> p; otherwise anypth-order accurate difference expression approximates
the first derivativefx exactly. If the parameterm is fixed to be sufficiently large, one can
observe that as the order of approximationp is increased, the optimal grid (4.13) becomes
more uniform; this characteristic correlates with the above theoretical analysis. The optimal
grid point distribution can also be calculated numerically by using Eq. (2.58). At each grid
point the unknown parameterα(x) is found as a solution of the equation

T4(α) = 0, (4.14)

whereT4(α) is given by Eq. (2.63). For this particular choice of the functionf (x), Eq. (4.14)
can be solved analytically:

α = 1

5

m− 4

m− 2
. (4.15)
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FIG. 13. Error convergence for a fourth-order approximation offx of f (x) = xm, calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the arc
length criterion, (5) uniform grid with fifth-order accurate discretization, and (6) numerical optimal grid generated
with the exactfxx.

Note that the optimal mapping (2.58), (4.15) is identical to the mapping (4.13) ifp = 4.
Error convergence plots calculated on the analytical (4.13) and numerical (2.58), (4.15)
optimal grids as well as on the corresponding uniform grid are shown in Fig. 13. As one can
see in this figure, the fourth-order approximation (4.12) on the optimal grid (4.13) exhibits
an even higher convergence rate thanO(1ξ5), which allows one to reduce theL2 norm of
the truncation error by six orders of magnitude in comparison with the uniform grid results.
The optimal grid (2.58), (4.15), generated numerically, provides superconvergent results
only on coarse grids, while as the grid is refined the order of approximation deteriorates to
4. This deterioration results from the numerical approximation of both the second derivative
and the integral in Eq. (2.58). Nevertheless, the evaluation offx on the 80-cell optimal grid
(2.58), (4.15) is about three orders of magnitude more accurate than that on the uniform
grid with the same number of grid points. One of the main reasons for such a behavior is an
error introduced by the numerical approximation offxx in Eq. (2.58). As mentioned above,
the optimal mapping (4.13) is singularxξ →+∞ at ξ = 0, which considerably decreases
the accuracy of thefxx approximation (4.1). This perturbation introduced into the optimal
grid by the numerical evaluation (4.1) destroys the superconvergence property. However,
if one uses the exact expression forfxx despite the fact that the integral in Eq. (2.58) and
x(ξ) are calculated numerically, the order of approximation is practically recovered to its
optimal value (see Fig. 13).

To demonstrate the importance of the consistent approximation offξ andxξ , error con-
vergence plots calculated by using different hybrid approximations on the optimal and
corresponding uniform grids are depicted in Fig. 14. The fourth-order accurate hybrid
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FIG. 14. Error convergence of the fourth-order hybrid approximation offx of f (x) = xm, calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

approximation is constructed as follows:

( fξ )i =
{ 1

121ξ ( fi−2− 8 fi−1+ 8 fi+1− fi+2) , i even

1
121ξ (−3 fi−1− 10 fi + 18 fi+1− 6 fi+2+ fi+3) , i odd.

(4.16)

If the metric coefficientxξ is evaluated by the same difference expression employed for the
first derivativefξ (4.16), then the leading term of the truncation error vanishes on the optimal
grid (4.13). Figure 14 shows the truncation error of the consistent hybrid approximation
of fξ and xξ exhibits a convergence rate ofO(1ξ5). At the same time, if the metric
coefficient is discretized by the symmetric fourth-order accurate formula (4.12) in the
entire computational domain, while the same approximation (4.16) is used forfξ , the
convergence rate deteriorates toO(1ξ4) and the truncation error increases by a factor of
50–100 in comparison with the consistent approximation results. The deterioration of the
error convergence rate on the finest optimal mesh presumably is caused by the machine
accuracy.

4.2. 2D Test Example

We shall seek a particular solution of Eq. (3.10) in the form

f (ξ, η) = eαξeβη

xopt(ξ, η) = eγ ξeφη

yopt(ξ, η) = eθξeψη,

(4.17)
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whereα, β, andγ , φ, θ , ψ are given and unknown constants, respectively. Note that this
choice of f , x, andy uniquely defines the functionf (x, y) in the physical domain. Because
the above mapping must be nonsingular, the Jacobian of the mapping,

J(ξ, η) = (γψ − φθ)e(γ+θ)ξe(φ+ψ)η, (4.18)

should be positive in the whole computational domain, which leads to

γψ − φθ > 0. (4.19)

Substituting Eq. (4.17) into the first equation of (3.10) yields

(γψ − φθ)α3 = (−φα + γβ)θ3+ (ψα − θβ)γ 3. (4.20)

Equation (4.20) together with the constraint (4.19) gives a family of the optimal grids.
Assuming thatφ = ψ = β = 1 simplifies the equation considerably. Under this assumption
Eqs. (4.20) and (4.19) are reduced to

(γ − θ)α3 = (γ − α)θ3+ (α − θ)γ 3 (4.21)

and

γ − θ > 0, (4.22)

respectively. Equation (4.21) has three real roots

γ1 = α − θ,
γ2 = θ,
γ3 = α.

(4.23)

The rootsγ2 andγ3 are not appropriate because the second root does not meet the inequality
(4.22), while the third root implies thatf (x) = x. Therefore, the only nontrivial solution
of Eqs. (4.21) and (4.22) isγ + θ = α. By introducing a parameterm so thatγ /θ = m, the
particular solution of Eq. (3.10) can be written in the following form:

xopt(ξ, η) = e
−mα
m+1 ξeη

(4.24)
yopt(ξ, η) = e

−α
m+1 ξeη

f (x, y) = x−
m+2
m−1 y

2m+1
m−1 .

In the present test example the parametersm andα have been chosen to be 10 and 3,
respectively. The corresponding optimal 41× 21 grid and 30 isolines of the functionf (x, y)
are depicted in Fig. 15. Notably, the optimal grid is orthogonal neither in the domain nor at
the boundaries. Moreover, the grid lines are concentrated near strong gradients, and at the
same time, they are not strictly aligned to the isolines off (x, y). A second-order accurate
approximation of fx is obtained by using two-point central differences for all theξ and
η derivatives. A uniform grid is generated by the transfinite interpolation of the boundary
nodes, which are uniformly distributed along the boundaries. Because the optimal grid
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FIG. 15. Optimal 40× 20 grid and 30 isolines of the functionf (x), Eq. (4.24).

(4.24) has been constructed under the assumption that the leading term of the truncation
error in theξ coordinate vanishes on the optimal grid, the grid is refined only inξ , while
the number of grid cells inη is fixed and equal to 20. Note that the grid refinement in
theη coordinate does not influence the convergence rate of the truncation error, which is
consistent with Eq. (3.10).

A comparison of the truncation error convergences obtained on the optimal and uniform
grids is shown in Fig. 16. Similar to the 1-D test examples, the global order of the symmetric
second-order approximation in two dimensions is increased by more than 1 on the optimal
grid. Furthermore, theL2 norm of the truncation error on the finest mesh is about four orders
of magnitude less than that obtained on the corresponding uniform grid. As can be seen in
Fig. 16, the new grid adaptation criterion enables one to reach the asymptotic convergence
rate on coarse grids, while the application of a third-order accurate discretization on the
uniform grid does not result in such essential reduction in the truncation error as on the
optimal grid.
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FIG. 16. Error convergence for a second-order approximation offx of Eq. (4.24), calculated on (1) uniform
grid, (2) analytical optimal grid, and (3) uniform grid with third-order accurate discretization.

The importance of the identical approximations of the first derivativesfξ and fη and
the metric coefficientsxξ , yξ , andxη, yη, respectively, is illustrated in Fig. 17. The figure
shows that if fξ , xξ , andyξ are evaluated by the same hybrid discretization (4.3), the or-
der of approximation inξ is increased by 1 if grid points are redistributed in accordance

FIG. 17. Error convergence of a second-order hybrid approximation offx of Eq. (4.24), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.
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with Eq. (4.24), regardless which second-order approximations are used forfη, xη, and
yη. However, if the metric coefficientsxξ andyξ are evaluated by the two-point symmetric
second-order difference expression in the entire computational domain, rather than at se-
lected points as in the hybrid discretization, while both the hybrid approximation offξ (4.3)
and the optimal grid (4.24) remain the same, the result is that the order of the inconsistent
approximation deteriorates to 2 and the truncation error increases by 103.

5. CONCLUSION

The new grid adaptation strategy based on the minimization of the leading truncation error
term of an arbitrarypth-order finite difference discretization has been developed. The basic
idea of the method is to redistribute grid points so that the leading truncation error terms
resulting from the differential operator and the metric coefficients cancel each other. In that
way, the design order of approximation on the optimal grid is increased by 1 in the entire
computational domain. In contrast to most of the adaptive grid techniques, for the present
method neither the truncation error estimate nor the specification of weighting parameters
is required. Another very attractive characteristic of the new approach is its applicability
to hybrid discretizations. It has been proven that if the differential operator and the metric
coefficients are evaluated identically, then the same optimal grid adaptation criterion that is
valid for nonhybrid discretizations can be used in the entire computational domain regardless
of points where the hybrid difference operator switches from one approximation to another.
One of the main advantages of the new method is that it can be directly extended to multiple
dimensions. It has been shown that the multidimensional grid adaptation criteria are fully
consistent with the one-dimensional counterpart. The 1-D and 2-D numerical calculations
show that the truncation error obtained on the optimal grid is both superconvergent and
reduced by several orders of magnitude in comparison with the uniform and standard
adaptive grid results for all the test examples considered.
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