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A new grid adaptation strategy, which minimizes the truncation erroptiiarder
finite difference approximation, is proposed. The main idea of the method is based
on the observation that the global truncation error associated with discretization on
nonuniform meshes can be minimized if the interior grid points are redistributed
in an optimal sequence. The method does not explicitly require the truncation er-
ror estimate, and at the same time, it allows one to increase the design order of
approximation globally by one, so that the same finite difference operator reveals
superconvergence properties on the optimal grid. Another very important charac-
teristic of the method is that if the differential operator and the metric coefficients
are evaluated identically by some hybrid approximation, then the single optimal
grid generator can be employed in the entire computational domain independently
of points where the hybrid discretization switches from one approximation to an-
other. Generalization of the present method to multiple dimensions is presented.
Numerical calculations of several one-dimensional and one two-dimensional test ex-
amples demonstrate the performance of the method and corroborate the theoretical
results. © 2001 Academic Press

Key Words:truncation error, grid adaptation criterion, finite difference approxi-
mation, error equidistribution.

1. INTRODUCTION

Grid adaptation has now become widespread for solving multidimensional partial diff
ential equations in arbitrary-shaped domains. One of the mostimportant problems assoc
with adaptive grid generation is an essential effect of the grid point distribution on error
the numerical solution. Until the present, little attention has been paid to the fact that
concentration of grid points in regions which most influence the accuracy of the numers
solution may at the same time introduce additional error because of grid nonuniforn
[1-3].
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There are two basic strategies of grid adaptation, namely, grid refinement and grid re
tribution. In the first approach, grid nodes are added to locally enrich the grid to achie
higher accuracy. In the second approach, the number of grid nodes is fixed and the id
to adjust the position of grid points to improve the numerical solution accuracy. In spite
significant distinctions, both methods require reliable and efficient grid adaptation critel

A number of grid adaptation criteria based on the equidistribution principle have be
developed. As shown in [4] the grid point distribution is asymptotically optimal if som
error measure is equally distributed over the field. One of the widely used approache
to redistribute grid points in accordance with the arc length and the local curvature of
solution curve [5, 6]. This kind of clustering is intended to reduce the error in the vicini
of strong gradients and local extrema of the numerical solution, but it does not necess:
guarantee improvement in accuracy where the solution is smooth.

Another class of methods is based on equidistribution or minimization of the local tru
cation error or its estimate [7-10]. In [7] the error estimate obtained by using a fin
difference approximation of the leading truncation error term is equidistributed by the g
point redistribution. Klopfer and McRae [8] solve a one-dimensional shock-tube pro
lem with the explicit predictor-corrector scheme of MacCormack on a grid dynamical
adapted to the solution. The error estimate is the leading truncation error term of the
ferential equations transformed to the computational coordinates. The metric coeffici
is taken as a linear function of the smoothed error measure. For solving a second-o
two-point boundary value problem with a centered second-order finite difference sche
Denny and Landis [9] suggest determining the optimal coordinate mapping so that
entire truncation error vanishes at all grid points. However, this grid generator conc
trates grid nodes where the solution is smooth rather than near steep gradients. T
the error reduction occurs in regions which do not practically affect the humerical so
tion accuracy. An alternative technique is employed in [10], where the optimal coor
nate transformation is constructed as the solution of a constrained parameter optimize
problem that minimizes a measure of the truncation error. The error measure used
finite difference evaluation of the third derivative of the numerical solution calculated
the computational space. The main drawback of all the methods mentioned above is
fact that the error estimates do not properly take into account that part of the truncat
error which is caused by the nonuniform grid spacing. Furthermore, it is not clear h
to extend these methods to more general equations and discretizations, and to mul
dimensions.

A grid adaptation procedure equidistributing an error estimate of the numerical solut
has been used successfully in [11] to reduce simulation error in such integral quanti
as the lift or drag. This error estimate is directly related to the local residual errors of t
primal and adjoint solutions of the Euler equations. The numerical results presented in |
indicate that the order of accuracy of the integral outputs increases by one if the propc
adaptation strategy is employed. Although this approach provides significant improvem
in the accuracy of the functional, the error estimation procedure is quite expensive in tel
of computational time because, except for the solution of the primal problem, it is necess
to solve the adjoint Euler equations, which doubles the computational efforts.

The formulation of an adaptive mesh redistribution algorithm for boundary value pro
lems in one dimension has been presented in [12]. The analysis uses error minimiza
to produce an optimal piecewise-polynomial interpolant in a given norm, which leads
the development of a family of grid adaptation criteria. Despite the fact that the pres
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approach works well in one dimension, this error equidistribution analysis cannot be
rectly extended to multiple dimensions [13].

In [14, 15] the finite element residual is applied to provide a criterion for determinir
where a finite element mesh requires refinement. As has been noted in [16] , for hyperk
problems with nonsmooth solutions the finite element residual may be an ineffective el
estimator, because for such problems the residual measured.isniben diverges, whereas
the numerical solution converges in this norm. The problem might be overcome if 1
divergence of the residual is localized to the area of nonsmoothness; the residual could
be used as a local error indicator. However, the localization of discontinuities become
very complicated problem in multiple dimensions.

The truncation error of any differential operator obtained on a nonuniform grid c:
be shown to consist of two parts. The first part, which also exists on a uniform me
is due to the approximation of the differential operator itself. The second part is cau
by the contribution to the error from the nonuniform grid spacing. As the grid is Ic
cally refined or redistributed, the first part of the error decreases, while the second |
may increase considerably because of the nonuniformity of the grid. All of the equid
tribution methods mentioned above redistribute grid points in accordance with one
another error estimate obtained on a nonadapted grid, but in doing so the grid ade
tion itself introduces additional error, which changes the error distribution. Therefo
to account for this change in the error distribution, the grid adaptation procedure ba
on the error equidistribution strategy should be repeated iteratively until the error e
mate norm is equally distributed over the field. Note that for moving meshes dynamice
adapted to the solution, the iterative procedure should be done at each time step t
tain the optimal mesh characterized by having the error equidistributed throughout
domain.

The main objective of this paper is to construct an optimal coordinate transformat
so that the leading truncation error term of an arbitratly-order finite difference approx-
imation is minimized so that it provides superconvergent results on the optimal grid.
contrast to the error equidistribution principle, for the present techniquee [@osteriori
error estimate is not explicitly required. Furthermore, the new grid adaptation criterion
lows one to minimize the error resulting from the differential operator itself and the err
owing to the evaluation of the metric coefficients simultaneously. Another very attracti
feature of the present approach is its applicability to hybrid approximations that depenc
some basic properties of the solution, such as flow direction, sonic line, and others. If
metric coefficients are evaluated by the same hybrid discretization used for the differ
tial operator, the new grid adaptation criterion remains valid throughout the computatio
domain regardless of points where the hybrid scheme switches from one approxima
to another. Extension of the new adaptation criterion to multiple dimensions is presen
The numerical examples considered illustrate the ability of the method and corroborate
theoretical analysis.

2. GRID ADAPTATION IN ONE DIMENSION

The truncation error of the first derivative approximated on a 1-D nonuniform grid
considered here. Let andé denote the physical and computational coordinates, respe
tively. Without loss of generality it is assumed that x < band 0< £ < 1. A one-to-one
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coordinate transformation between the physical and computational domains is given b

X = Xx(§), (2.1)
where

x(0) =a 2.2)

xX(1) = b.

The above mapping is assumed not singular so that the Jacobian of the transformatior
strictly positive function, i.e.,

xe >0, V& e[0,1]. (2.3)

The nonuniform grid in the physical space is obtained as images of nodes of a unifc
mesh in the computational domain

X = x(&), gi:%, i=01,...,1. (2.4)

With the coordinate transformation (2.1), the first derivative of a functigr) with
respect tox can be written as follows:

fe
fy = —. 25
= (2.5)
To construct apth-order approximation ofy in the physical domain, we approximate

andx; by somepth-order finite difference expressions in the computational domain

YIS, af
La(fy) = —/——.
g InTzn?z_ml ,Bmxm

(2.6)

wherexm = X(&m), fi = f(§); Ly is afinite difference operator; and the indi¢gd, and
my, My, as well as the coefficientg and 8y, depend on particular approximations used
for evaluating f: andxe, respectively. Henceforth, it is assumed that the functib@s
andx (&) are smooth enough so that all derivatives needed for the derivation are continu
functions or¢ € [0, 1]. Expanding the numerator and denominator of Eq. (2.6) in a Taylc
series with respect t§ and omitting the index on the right-hand side yields

i+l
Z o fi = fg_ + C’; fs(erl)AEp + O(Aserl)

I=i—l;

- 2.7)
D7 BoXm = X + CExPTAEP + O(AEPTY),
m=i—my
where
gPtix gPHif 1
Xéerl) _ (p+D) _ AE ==,

I e R T T
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and Wherecg andCj are constants dependent enand Bm, respectively. Substituting
Eq. (2.7) into Eq. (2.6) and taking into account tkat> O, V& < [0, 1], one can write

(P+D)
fe + ClAEPFPT

+ O(AEPHY), (2.8)
Xe (1 + Cg%pxg’”b)

Lh(fx) =

If A& is chosen to be sufficiently small so thag p|X§(p+1)/X5| < 1, Eqg. (2.8) can be

linearized as follows:

1 AEP
Ln(fy) = xz(fg +ClagPiPY) (1 - ching) + O(AEPHY. (2.9)

Note that the error introduced by the linearization is of the orde® 0k£2P). Neglecting
higher order terms in Eq. (2.9) yields

(p+1) X(P+l)

To(X) = Ln(f,) — fx = ClAEP $Xe — CXAEP fxz fe. (2.10)
&

The right-hand side of Eq. (2.10) is the leading truncation error term. Thus, if tl
metric coefficientx; is evaluated numerically as in Eq. (2.6), the asymptotic truncatio
error of anypth-order finite difference approximation consists of two parts: the first or
resulting from the evaluation of; and the second one caused by the discretization of tt
metric coefficienk; . It should be emphasized that any grid adaptation based on minimizati
or equidistribution of the first part of the truncation error alone is not sufficient because
second part of the truncation error may drastically increase in regions wt@rehanges
rapidly. In other words, any inconsistent grid adaptation transfers the error from the first te
of the truncation error to the second, and vice versa. To minimize both parts of the trunca
error simultaneously, the following restriction is imposed on the coordinate mapgjng
V& € [0, 1]:

C 1P % — CixPTV 1| < O(Ae)XE. (2.11)

If Eq. (2.11) holds, the asymptotic order of approximation of Eq. (2.6) on the optimal gr
generated by the mappingé) is p+ 1 in the entire computational domain. Replacing
the inequality sign in Eq. (2.11) with the equality sign, the grid adaptation criterion can
expressed as

CHifPx — CEx(P f, = O(AE)XE. (2.12)

Note thatthe presence of tlg A&) term in the above equation shows that the grid adaptatio
criterion is rather stable under perturbations of the optimal grid.

Recall that the coefficienfsg andCj depend on the particular approximations used an
do not depend orf (¢§) andx(&). One of the most important classes of approximation is
consistent approximation, where the same difference operator is employed to evaluat:
derivativesf; andx;. In this case, the coefficien&g andCj are identical and Eq. (2.12)
is simplified to

P — £ x(PH = O(Af)xe, (2.13)
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or setting the right-hand side equal to zero yields

P % — fexP = 0. (2.14)

There are several advantages of such a simplification. First of all, the use of the s:
difference approximation for botfi; andx; eliminates thef, term from the truncation

error. Actually, let us represerit and fs(p”) in terms of thex derivatives:

fé = X fx
(p+D) _ (p+D) ® " (2.15)
f.gp = Xgp fx+(p+1)xgp Xe fxx+"'+XSp fx(p"'l).

With the above expressions substituted into Eq. (2.10), the leading term of the truncat
error Tp(X) can be written as follows:

(p+1)

X
To(x) = (Cj — C})AEP EXS fu + CIAEP[(P+ DX fu + - +xP £PTV]. (2.16)

Equation (2.16) shows that ttg # Cj, then the truncation error depends on the first
derivative fyx being approximated. In order to eliminate this term, the metric coefficier
must be evaluated by the same difference approximation usett fddote that ifx; is
approximated by the exact analytical expression or any finite difference formula differe
from that employed to calculatg, the f, term arises in the truncation error.

Another advantage of the consistent approximatiorfoand x; is that the single
optimal grid (in the sense of Eq. (2.14)) can be generated for hybrid discretization wh
the coefficienCFf, may be discontinuous in space and implicitly may depend on the functic
f(€).1fC} # C;andthe coefficien | is discontinuous, then the optimal mapping definec
by Eq. (2.12) is discontinuous as well. The identical numerical approximatignarid f;
removes the dependence of the optimal mapping on points in the physical domain wt
the hybrid scheme switches from one approximation to another. If identical numeri
approximation is the case, the optimal grid point distribution depends only on the orc
of approximation and is completely independent of the particular finite difference formt
used.

As has already been mentioned, Eq. (2.14) is a grid adaptation criterion, but at the s:
time this equation can be treated as a grid generation equation. To provide the existence ¢
solution of Eq. (2.14), it is assumed thit> ¢ > 0, V& € [0, 1], and f (§) € CP*1[0, 1].

It can easily be seen thai¢) = c¢; f (§) + ¢, is the solution of Eq. (2.14), but this triv-
ial solution is not appropriate because it means th@d) is a linear function ok in the
physical space. Another problem associated with the solution of Eq. (2.14) is bound
conditions. Taking into account Eq. (2.15), one can show that Eq. (2.14tisarder ordi-
nary differential equation. Therefore, to find the unique solution of Eq. (2@dB®undary
conditions should be imposed, but only the two boundary conditions (2.2) are availat
In spite of the above-mentioned difficulties, the optimal grid generation problem (2.1.
(2.2) can be solved analytically for very important cages 1, 2, and the approximate
analytical solutions can be obtained for higher order discretizafions3.
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2.1. First-Order Approximation, p=1

For a first-order accurate approximatipris equal to 1 in Eq. (2.13), which then takes
the form

fgng — féng = O(Aé)xéz (217)
By using the following expression for the second derivative,

fo TeeXe — TeXe
XX — 3
Xg

’

Eq. (2.17) written in the physical space is reduced to

fXX
= . 2.18
&=75 ) (2.18)
Integrating Eqg. (2.18) and taking into account the boundary condi§i@)s= 0, £(b) = 1
yields

(2.19)

However, to satisfy Eq. (2.18) the following restriction should be imposef,gn

b
/ fux dx = O(AE). (2.20)

To satisfy Eqgs. (2.3) and (2.18), in this section it is assumedftiat 0. As will be shown
in the next section, this restriction can easily be removed. Equation (2.20) indicates tha
second derivativex has to be of the order @ (A¢) for all x € [a, b]. In other words, if
f (x) is an essentially nonlinear function, so that Eq. (2.20) is not satisfied, it is impossi
to increase the global order of approximationfefby grid point redistribution.

In spite of the fact that the order of the approximation remains equal to 1, the glol
truncation error is minimized on the optimal grid Eq. (2.19). Actually, for first-order dis
cretizations the leading truncation error term Eq. (2.10) is rewritten as

fexe — f f
Ty(x) = CAg 28— R o g (2.21)

X¢ €’

whereC; is a constant dependent on the particular first-order approximation usetl, The
norm of the truncation error, which is

b
frx \ €
ITo0)ll, = C1AE / ($—> dx, (2.22)

can be treated as a variational integral. The corresponding Euler—Lagrange equatiot
minimization of the above integral is directly solvable:

B f;‘( fo) K/ &FD dx

E(X) = —fab( PRTTTRTI

(2.23)
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If k - 400, then Eq. (2.23) converts to Eq. (2.19). Therefore, the optimal mapping E
(2.19) minimizes thé ., norm of the leading truncation error term. Note that on the optime
grid Eqg. (2.19), the leading truncation error term is equidistributed throughout the field,
that

b
Ti(X) = C1AE / fyx dX = const (2.24)
a

2.2. Second-Order Approximation, p 2

If both f: andx; are evaluated identically by a second-order accurate formula, the g
adaptation equation (2.13) written fpr= 2 becomes

feeexe — fexeee = O(AE)XE. (2.25)

The derivatives in Eq. (2.25) can be transformed from the computational space to
physical space as follows:

fg = fog
3 (2.26)
fggg = fxxxxg + 3fXXX§Xg§ + fXngg.
Substituting Eq. (2.26) into Eq. (2.25) yields
froC + BfaxXes = O(AE). (2.27)

By using the following expressions for the metric coefficient and its derivative,

Xe = —

&x

Xep — — XX
ES %X ?
and assuming thattx = 0, VX € [a, b], Eq. (2.27) can be rewritten as

f)()()( gXX S)%

— =3"—+ 0(A%)—.

fxx EX ( %- fXX
Because a decrease in the last term in the above equation increases the approxim
accuracy, one neglects ti@ A¢) term and integrates the left and right-hand sides of Eg
(2.28) with respect ta to give

(2.28)

£3 = Cyx, (2.29)

whereC is a constant of the integration. Equation (2.29) has one real and two comp
roots. Since only real roots are of interest the complex roots are not considered. Taking
account the boundary conditions (2.2), the above equation can readily be integrated, w
gives

[ (Y3 dx

E(X) = f;(fxx)lﬁdx'

(2.30)
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If a grid is generated in accordance with the optimal mapping (2.30), the leading term of
truncation error is zero for all points ia[b], and the global order of accuracy is increasec
from 2 to 3.

The optimal grid point distribution defined by Eq. (2.30) can be appliefg,ifis a pos-
itive function; otherwise the mapping becomes singular, which leads to grid degenerat
However, this problem can be overcome. For that purpose the interMal is divided
at subintervals wheré,, is of constant signs. Let; < X < x, be an interval where the
second derivative is negative: i.d,x = —| fxx| < 0. Then, Eq. (2.30) becomes

- S (Foo2dx =[5 Hod Y2 dx [ [ il V2 dx 2:31)
X) = — = — = — . .
S (hootBdx = [2 [ fd¥3dx (2 |3 dx
1

1 1

From Eq. (2.31) it follows that the metric coefficigntgiven by Eq. (2.30) is strictly positive
in the interval wheref,y is negative. Taking into account the fact that the same formul
(2.31) remains valid for positivé,, the intervals of positive and negative signs, except fo
the inflection points of the functiof (x), can be joined so that

X
_ Z] ij+0 | fXXll/st
- Xj+1—0 ’
5 5 O ¥ dx

wherex; are the inflection points of (x). To add the inflection point$yx(xj) = 0 to the
above integrals, special consideration is required.

Let xo be a point of inflection of the functioffi (x): i.e., fxx(Xo) = 0. Note that if the
function f (x) is modified by adding an arbitrary linear function, the optimal grid (2.30
remains unchanged. Furthermore, if the functfam) is linear in the whole intervaH| b],
thenfrom Eq. (2.29) it follows th&t, = 0, Vx € [a, b]. This condition results in the grid step
size inthe physical domaiix = A& /&, tending to infinity, which in turn can be interpreted
that an arbitrary large grid spacing can be used to approximate the first derivative of
linear function exactly. Expandindyy in a Taylor series abowt = xp in Eq. (2.30) and
assuming thafyyxx(Xo) # 0 yields

£(X)

VX DX # X, (2.32)

fux(X) = Fxxx(X0) (X — Xo) + O((X — X0)?).

Substituting the above expression in Eq. (2.30) and neglecting®@th— xo)?) and higher
order terms gives

£ = Cfyux(X0) (X — Xo). (2.33)
Lettingx — Xg results in
£x(x0) = im (Cfox(X0) (X = X0)) "/ = 0,

As noted above, this kind of grid degeneration when the metric coeffigjemtnishes does
not impose any restriction on the grid step size at the inflection point. Therefore, in 1
vicinity of the inflection point, the original second derivatifg, can be modified to

- [ fxl, | fxx| > €
fxx(x) = ) (2.34)

f2 4 ¢2
”27:, | fxxl <€
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wheree is a small positive parameter. Equation (2.34) provides that the metric coefficie
&« is a smooth function in the entire physical domain. Note that the results obtained in
foregoing section (fop = 1) remain valid if f,y is replaced byf xy.

From the above consideration, it follows that for an arbitréirg C2[a, b] the optimal
mapping that minimizes the leading truncation error term globally is

[ (Fe0dx

S0 f;(fxx)l/gdx. (2:35)

To estimate the asymptotic truncation error of the second-order difference expressior
fx on the optimal grid (2.30), Eq. (2.8) is rewritten to include the third-order terms:

fg + CzA§'2 fSE& + C3A§3 f§(4)
Xe + CzA$2X§§g + C3A§3X§(4)

Ln(fx) = + O(AE?). (2.36)

By linearizing Eq. (2.36) and collecting the terms@f A£?) and O(A&3), the first two
terms in the truncation error are

T, —cA—ézf — Xeeg | (:A—53 fPx. — xP f 2.37
20 =C2—3 [ feeeXe — Xeee fe] +Cs 2 [fe% — %" fe]. (2.37)
£ £

Because the first term on the right-hand side of Eq. (2.37) vanishes on the optimal

defined by Eqg. (2.30), the asymptotic truncation error becomes

To(X) = Ca—p [ F{% — x(V ). (2.38)

AE3
2
X

To determine the expression in the square brackets, Eq. (2.14) writtgn=fa® is differ-
entiated with respect to. Thus,

FEO% 4 fereXer — feeXeee — X fe = 0, (2.39)
Resolving Eq. (2.14) with respect tip:: and substituting it in Eq. (2.39) gives

fE(A)Xg — XéA) fg = nggxéz fyx. (240)

With Eq. (2.40), the leading truncation error term on the optimal grid (2.30) can be rec
as

TQ(X) = C3A§3X555 fxx. (241)

For the optimal grid, Eq. (2.30) holds. Taking that fact into accoxuat,can be represented
in terms of the functiorf (x) and its derivatives as follows:

_ 35)%)( - éxxxéx _ 5fx2xx - 3f)§4) fxx
STy T ey

(2.42)
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whereC is the integration constant in Eq. (2.29). By substituting Eq. (2.42) into Eq. (2.4
the leading truncation error term is given by

352, — 3@ fey

XXX

Ta(x) = CaAg> 2
XX

(2.43)

This formula, which is valid for all points from the intervail,[b] except for the inflection
points of the functionf (x), shows that the error is not equidistributed on the optimal gric
Let us estimate the leading term of the truncation error at a point of inflegton
fyx(Xo) = 0. Because the second derivatifsg has been modified in the neighborhood of
the inflection point, as defined by Eqg. (2.34), the second-order term in the truncation e
does not vanish. Substituting Eg. (2.34) into Eq. (2.37) and neglecting higher order te

gives

- fxx Fxxx( fNxx)iz/3 + ( fmxx)l/3 fxxx

fXX

Ta(Xo) = CoAE?

Letting x — Xg yields

fxxx(Xo)
(e/2)%3°

Ta(Xo) = CoAE? (2.44)

Equation (2.44) shows that locally, near the inflection point, only the second order of «
proximation can be obtained on the optimal grid. However, if the functioo is linear, any
second-order accurate approximationfpfandx; in Eq. (2.5) on an arbitrary nonuniform
mesh gives the exact value &f. By virtue of the fact that the number of inflection points
is finite, theLx(k < K < 4-00) norm of the second-order accurate approximatiofiain
the optimal grid should provide superconvergent results.

In regions where the functioffi(x) is discontinuous, the above reasoning is not valic
because the first and higher derivatives do not exist there. In contrast to the inflection pc
in the vicinity of local extrema of (x), wheref,« achieves its maximum value, the fraction
in Eq. (2.43) becomes very small, so that locally, an even higher order of accuracy may
obtained.

Remark 2.1. It can readily be checked that standard grid adaptation criteria such as
arc length of the functiorf (x) and the second derivativigx do not globally minimize the
leading term of the truncation error. Actually, with the arc length grid adaptation criteric
the following grid point distribution is obtained:

a1+ f2dx

§(X) = . 2.45
J2/1+ f2dx (249)
Substituting Eqg. (2.45) into Eq. (2.37) yields
—3f, 2 1+ f2)f
Ty(x) = CoAs?—>~ i (1+ ) —. (2.46)

(1+ 12)?
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The comparison of Eq. (2.46) with the leading term of the truncation error obtained ol
uniform grid, which is

TSN(X) = CoAE? fuxy,

shows that this grid point distribution may improve the accuracy locally near steep gradie
of the functionf (x). At the same time, in regions whefg, is much greater thaff, e.g.,
near local extrema of (x), the actual order of approximation may deteriorate to 1 or eve
less.

Ifinstead of the arc length adaptation criterion one redistributes grid points in accordal
with the second derivativé,y, the leading term of the truncation error is

2fXXX

To(X) = —CoAE2 2%
2(X) 2AE 2

(2.47)

From the above formula it follows that in regions whéfe,| < +/2, the local truncation
error (2.47) is always greater than the asymptotic truncation error on a uniform grid.

In summarizing what has been said above, the following conclusions can be dra
On the one hand, the standard grid adaptation criteria do not provide superconverge
On the other hand, although the standard grid adaptation techniques may locally impr
the accuracy of calculation, the global truncation error may become even larger than
obtained on the corresponding uniform mesh. Despite the fact that the above derivation
been performed for the second-order discretization, the same conclusion can be draw
higher order schemes.

Remark 2.2. An alternative method of solving Eq. (2.25) will now be described. Inte
grating Eqg. (2.25) by parts and neglecting theéA&) term on the right-hand side yields

ngXE — nggg = é, (248)

whereC is a constant of the integration. The above equation is closed by using the bounc
conditions (2.2).
In order to find the unknown consta@t Eq. (2.48) is rewritten in the following form:

20 (fe\ &
s (XE) —¢. (2.49)

_ Lot
- Xe 3(’;: Xe ’
Eq. (2.49) is reduced to Eq. (2.29) and the constanan easily be determined, yielding

b 3
C= (/(fxx)l/de) . (2.50)

The boundary value problem, Egs. (2.48), (2.50), and (2.2), should be solved numeric:
If at some pointf: and fs; are equal to zero simultaneously, Eq. (2.48) degenerates. T

With

XX
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problem can be overcome by modifying the derivatifesf.: and the constar€ as
- fy fy
o= =G5
& (CH
f* _ 1:Nxxgx B gxx 1?x _ 3( fox)2 - 1?xxx f~x
133 53 Cz/s(fxx)5/3

b 3
C= (/(Fxx)l/adx> )

where f 4 is given by Eq. (2.34), and wherig,, and f are calculated by differentiating
and integratingf xx with respect tox, accordingly. Because the functidhn is strictly
positive in the entire computational domain, the first derivaﬁyés a positive function as
well. These modifications make the Eq. (2.48) fully consistent with Eq. (2.35).

Note that there are several differential forms of the optimal grid generation equation. |
example, instead of integration of Eq. (2.25) by parts, Eq. (2.27) may be used to detern
the optimal grid point distribution. Because each of these differential equations has
advantages and disadvantages, at the present time it is difficult to say which one is bet

2.3. High-Order Approximations, p- 3

If f; andx. are approximated identically by a third-order accurate formula, the optim
grid generation equation written in operator form in the physical space is

4 4
[18} f— fy {18} x = 0. (2.51)
&x 0X §x 90X

Performing the indicated differentiation yields

fxx(l5§3X - 4§x§xxx) + &« (—6§xx fxx + &x fx(4)) =0. (2.52)

Although the above equation is much more complicated than the analogous equation del
for the second-order discretizations, Eq. (2.28), the solution of Eq. (2.52) will be construc
in a similar form. On one hand, a solution in the formtof g( fx), whereg is an arbitrary
function of fy, is not appropriate because in this case fiffé term in Eq. (2.52) cannot be
canceled. On the other hand, if a solution depends,Qpor higher derivatives off (x),
the f,® term arises in the truncation error, and cannot be canceled. Therefore, the solu
of Eq. (2.52) is sought in a form similar to Eq. (2.29):

& = C(fxx)". (2.53)

With Eq. (2.53) substituted into Eq. (2.52), the leading truncation error term can be writ
as

C3AES

500 = ot

(2 — 10) £, + (4o — D) F 7). (2.54)

XXX

In contrast to the second-order discretization, for the third-order approximation the lead
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term of the truncation error does not vanish at any const. Assuming that the parameter
a(X) is a function that weakly depends a@rand setting the leading truncation error term
equal to zero yields the following quadratic equationdox):

a(X)(2 — 1la(x)) 2, 4 (Da(x) — 1) fyx £.P = 0. (2.55)

XXX

The solution of Eq. (2.55) is

1
Q12 = 1—1(1 +2r(X) £ /1= 7r(X) + 4r (x)2), (2.56)
with
4
F 00 = fxxzfx _
fXXX

Without loss of generality it is assumed thiaky #~ 0. If fyxx = 0 then the solution of Eq.
(2.55) isa = 1/4. Note that the functiom(x) should be positive in the entire physical
domain; otherwise the mapping (2.53) with< 0 concentrates grid points whefé&x) is
linear and makes the grid very coarse where the second derigfiielarge. Because the
above analysis is valid if the functian(x) depends slightly o, « is constructed as

LA+ +V1I-Tr+4?), r<0

ar) = —Br3+ 823+ 2 0<r <], (2.57)

1 _ _ 7
qA+2r —V1-Tr +4&2), r>g

where the polynomial in Eq. (2.57) has been chosen sattratis a continuously differ-
entiable function of . A plot of & versug is shown in Fig. 1. As can be seen in the figure,

0.5

0.4

0.3

0.2

01

FIG. 1. Parametew for a third-order accurate discretization.
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the functionx (r) is practically equal to 24 in the whole range af except for the interval
—1 <r < 3. Althoughu(r) is quite smooth, the functiam(x) may be nonsmooth because
it depends onfyy, fxxx, and fx(4>, which are calculated numerically and may therefore b
oscillatory. In numerical applications the functiafix) should be smoothed to meet the
requirements used for the derivation of Eq. (2.54).

Such a choice oft(x) provides that the leading truncation error term is approximatel
equal to zero inthe entire physical domain. As follows from Eqg. (2.53), the second derivat
fxx must be a positive function oa[b]. Note that a general property of both Eq. (2.51) anc
Eq. (2.14) isthat it is a solution of Eq. (2.51), thené, is a solution of Eq. (2.51) as well.
The same is true for the functioi(x) and its derivatives; i.e., if «x = — fyx is SUbstituted
into Eq. (2.51), the same equation is obtained in termk,@f Hence, the second derivative
fxx i EQ. (2.53) can be replaced with Eq. (2.34). Thusfsifandx; are evaluated by the
same third-order accurate formula, the optimal grid point distribution, which minimizes t
leading term of the truncation error in the entire computational domain, is

o (Fx0 ™ dx

= P (Fo dx (2:59)

£(X)

where f, anda(x) are defined by Eqg. (2.34) and Eq. (2.57), respectively.

From the above analysis one can see that the same strategy used for the third-c
approximation can be applied to higher order discretizations. Actually, the leading terr
the truncation error for an arbitrapth-order approximation ofy is

CpAsP
Tp(§) = "X;(f;“”x$ — fex(P*Y). (2.59)

With the following relations between ttge andx-derivatives written in operator form,

9 19
dE £ OX

" _[ray”
35“_[$X8x} ’

the truncation error can be transformed into the physical space as follows:

19 p+1 19 p+1

Expanding the power of the derivative operator yields

(N AP T O I P I O F’+1xaf+( PN i
£, 9x = & x| ™ |ox = |& ox ax P £ X
1 97 af 19 1 9P af
B BTN T DV N A 2.61
X[sxax] ox " +L§xax}x{5xax} i (261
Thus, the term with, in Eq. (2.60) is canceled, and therefore the highest derivativaspf
and f (x) in the truncation errofp(x) are&{P and f PV, respectively. Assuming that on
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the optimal grid the leading term of the truncation error is of the ordéx(@¢), &£ (x) should

be sought as a function df(x) and its derivatives. By comparing the highest derivatives o
£ and f, one can observe that§f = g(f, fy), then the termfP*Y in Eq. (2.61) is never
canceled, while i, is a function of f{, n > 3 the uncancelabld,"*P-V term arises

in the truncation errofp(x). In @ manner similar to the first-, second-, and third-orde
approximations, the optimal grid for theth-order accurate discretization is sought in the
form of Eq. (2.53). By substituting Eq. (2.53) into Eq. (2.61) the leading truncation err
term becomes

To(X) =

(f )pa {[1 a(p+ D] fP +aG(a, fuxs fxxxs -0 [LP)}. (2.62)
The above formula takes into account the fact that the second term on the right-hand sit
proportional tax. This dependence is no surprise because fer0, which corresponds to a
uniform mesh, the asymptotic truncation erffg(x) is reduced t€, A& P fPTV; therefore

all the terms in Eq. (2.62) except fdiiP+? have to be proportional ta. For example,
for fourth- and fifth-order discretizations the leading truncation error terms obtained on:
optimal grid (2.53) are

CaAE4 f3 IRCR RS
Tax) = =2 ix{(l—Sa) fx<5>+a[ 100 (1 + 50) XXX+5(9a 1)-X ]}
(fXX) )(x fXX
(2.63)
and
CSA%_S (6) 2 3 ;xx
Ts(X) = s (1—6a) f® +a|(64 4% + 196x° 4 2740®) XXX )
XX
. 2) B f40 ) B ()
(74 97a + 421 ) + 327 —2) XX 42260 — 1)~ |},
fXX fxx fXX
(2.64)

respectively. As follows from Eq. (2.62), at aay= const the terms on the right-hand side
do not vanish simultaneously. To minimize the leading term of the truncation error t
following procedure is proposed. At each grid point the parameeigfound as the solution
of the nonlinear equatiof («) = 0, which is solved by Newton’s method. That choice of
a provides that the leading truncation error term vanishes on the optimal grid. Because
above consideration is valid only if depends slightly orx, the functiona(x) must be
smoothed in numerical applications.

Remark 2.3. If p — +00, i.e., if the order of approximation is infinitely large, the lead-
ing term of the truncation error (2.62) vanishes dor 0. In other words, the higher the
order of approximation used to evaluate and x¢, the more uniform is the grid which
minimizes the leading truncation error term. At the limit of infinitely high-order approxi
mations, a uniform grid is optimal in the sense of minimization of the asymptotic truncati
error.

Remark 2.4. In numerical calculations, the second derivatiyg is approximated nu-
merically and, therefore, depends on grid spacing in the physical domain. To improve
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accuracy of the optimal mapping given by Eg. (2.58), the following iteration procedure c
be applied. At each grid point, the approximation of the second derivative can be upds
when the new grid point distribution is found. In its turn, the updated second derivat
generates a new optimal grid (Eq. (2.58)).

Let us show that this iteration technique is equivalent to the Picard iteration method (e
see [17]). Actually, withé replaced by 1x: and Eq. (2.53) integrated with respectto
the following integral equation for the optimal mappix¢) is obtained:

£
Xx(&)=a+((b-a) / G(t, x) dt, (2.65)
0
with
G(t, X) = (fxx)_a

fol(fox)*a dt

As follows from Eq. (2.34), the functio® is continuously differentiablgx € [a, b] and,
consequently, satisfies the Lipschitz condition. From this fact it follows that the int
gral operator Eqg. (2.65) is contractive oa, p] and maps &, b] into itself. Therefore,
the iteration procedure based on Eq. (2.65) converges uniformly to the optimal mapg
X(§).

An alternative way of constructing the optimal grid, wh&¢x) is given numerically, is
to interpolatef (x) by using piecewise polynomials. This interpolation results in that th
second derivativef, in each grid cell can be calculated analytically. Consequently, tr
optimal mapping Eg. (2.58) also can be calculated analytically. In contrast to the ab
iterative technique, no iteration is required for this approach.

3. GRID ADAPTATION IN MULTIPLE DIMENSIONS

The present approach can be extended directly to multiple dimensions. In particu
consider the three-dimensional transformation of the first derivative,
_ WY

4
fy = 3 1 fe +

Z: — Z Z — Z
YeZe : ¢ s f,+ nyé\]ynéfg’ 3.1)

where the Jacobian of the mapping is given by

J = Xe Y2 + Xy Ve Ze + XeYeZy — Xe Ve Zy — Xy YeZe — Xe Yy Ze.

The pth-, gth-, andr th-order finite difference approximations for the n-, and¢-deriva-
tives, respectively, yield

(8:28,Y — 8:¥8,2)8: T + (8, Y8:Z — 6,28 Y)S, T + (8,28:y — 8,Y8:2), |
JeX8yY8;Z + 8, X8; Y8eZ + 6 X8 Y8, Z — 8: X8 YO,Z — 8y X8 Y8; Z — 8y X8, Y06 Z
+ O(AEPTE AnTH ALY, (3.2)

Lh(fx) =




476 NAIL K. YAMALEEV

where the differential operatoég, é,, ands, are defined by

0 b gp+L
O = 9% +CpAs dgptl
9 8q+1
— q
P ] ar+l
(Sg-:&—I-CrA{ 3§r+1‘

The constant€,,, Cq, andC; are dependent on particulath-, gth-, andr th-order finite
difference approximations applied to discretize $hen-, and¢-derivatives accordingly.
Equation (3.2) takes into account the fact that the metric coefficients are approximatec
the same finite difference expressions used for evaludting,, and .

In view of the fact that the mapping used is nonsingular=(0), the denominator of
Eq. (3.2) can be linearized to give

1 - - . -
Toar€.m.0) = 5 [CoAsP(FPH — JPHV 1) + Cqand (FOHD — Jatb 1)

(3.4)
+CrA§r(F~§r+D _ j§r+l) fx)]7
where
FPY = 17 @y, —yez) + @ -z ) + 27 (e =y o)
FOrD = £ @ (Zy, — 2 ye) + YO (7 fr — 2 f) + 29D (e fr — v fe)
Fe = 1@y — vz + v V@ f -2t + 20V fe — e fy) (3.5)

I =xP P @y, — yez) + Y 2% — zex) + 2P (Ve xy — yixe)
JED = XD (Zey, — 2 ye) + YD (2 Xe — ZX0) + 20D (VeXe — YeXe)
j§r+1) — X§r+1)(zny$ _ yr;Zs) + yger)(ZSXn _ ans) + Z?H)(y,,Xg _ YEXn)~
The linearization has been performed under the assumptions
AEPIIPY «
Anq|j;q+1)| <
AL <,

which can be treated as conditions for the minimum number of grid points needed for
approximation.

Similar to the 1D case described above, the leading term of the truncation error (3.4)
be divided into two parts. The first part, which also exists on a uniform mesh, is due to 1
approximation offg, f,, and f.. The second part, which vanishes on a uniform Cartesia
mesh, is caused by the evaluation of the metric coefficients. Equation (3.4) shows th:
a grid is constructed so that the first term in the parentheses is of the or@arAdf),
the second term is of the order 6f(An), and the third term is of the order @(A¢)
forall £ € [0, 1], n € [0, 1], and¢ € [0, 1], then the global order of approximation of the
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difference operator (3.2) if), n, and¢ on the optimal grid is increased from q, andr to
p+1,9+1,and + 1, respectively. Therefore, in the sense of minimization of the leadin
truncation error term the grid adaptation criteria are

FiPH — 1,3 = 0(ag)d (3.6)
Fath — £, 59 = 0(An)J (3.7)
Fid — 30 = 0oa0)d. (3.8)

Note that the above equations are not a system of equations and can be considered sepz
Ifitis necessary to improve the accuracy with respect t¢tbeordinate alone, a grid must
be generated such that only Eqg. (3.6) holds. However, if increasing by one the orde
approximation offy in theé&, n, and¢ coordinates simultaneously is desirable, then the gri
must obey the system of Egs. (3.6)—(3.8).

The 3-D grid adaptation criteria (3.6)—(3.8) can be simplified. After the substitution
Eq. (3.5) into Egs. (3.6)—(3.8) and considerable algebraic manipulation, the grid adapta
equations can be rewritten in very compact form,

£ g (P

fy Xt (p+D f,

Ze Yo — ¥ezo) ( fyyt ZPY) = 0(A%)J
(YeZe — ZeYe) (£ — fox (9D — fy(@+D — f,200+0) = O(An)J (3.9)

@Y — YoZe) (FY = £xIY — £y — £,20Y) = 0(a0)d,

where fy, fy, and f, are the first derivatives with respect to tkey, andz coordinates,
respectively. One of the characteristic features of the above equations is that they dc
depend on the coefficient,, Cy, andC;. Consequently, if in each spatial direction the
metric coefficients and the first derivativesfof, n, ¢) are evaluated consistently by some
hybrid finite difference operators, then the grid adaptation criteria (3.9) can be appliec
the whole computational domain regardless of points where the hybrid scheme switc
from one approximation to another. In the 2-D case wirere z, = 0, z, = 1, the 3-D
grid adaptation criteria (3.9) are reduced to

Yy [fé(lﬂ'l) _ fyyg(p+1> _ fxxép-%l)} — O(AE)J ( )
3.10
_yé[fn(qﬂ) — fyy$q+1) _ fo,gq’Ll)} — O(An)J.

If, in addition to these conditiong; =y, = 0,y, = 1 are imposed, Egs. (3.9) are reduced
to the 1-D optimal grid generation equation (Eg. 2.13). Similar to Eq. (2.13), Egs. (3.9) &
(3.10) can be proved to be invariant with respect to stretching and to translation of both
physical and computational coordinates. Note especially that because all the grid adapt:
criteria, Egs. (2.13), (3.9), and (3.10), have been obtained ih th@orm, these criteria
remain valid in anyL, norm.

As follows from the analysis presented in the foregoing section, the grid adaptat
equation does not ensure that the coordinate mapping obtained as the solution of Eq. (.
is not singular. The singular mapping means that either 0 or J — +o00. Because Eq.
(3.9) is converted to Eq. (3.10) and in its turn Eq. (3.10) is reduced to Eq. (2.14) if t
dimension of the space is decreased by 1, the same singularity may occur in two and t
dimensions as well.
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Equations (3.9) and (3.10) must be closed by corresponding boundary conditions. Sirr
to the 1-D case, these equations can be shown ttberder partial differential equations.
Therefore, for each equation in Eq. (3.8)houndary conditions should be imposed at eact
pair of the opposite boundaries (i.e.=0andé =1,p=0andnp =1, =0and; = 1)
to find the unique solution. However, at each boundary only one boundary condition
available. For example, in the 3-D case in ¢heoordinate, the boundary conditions are

EX,Y,2=0, £&X,y,2 =1 (3.11)

In other words Eq. (3.9) and Eg. (3.10) are not closed. The situation becomes even n
uncertain when only one of the grid adaptation criteria is used. However, this uncertai
gives additional degrees of freedom, and at the same time it is conceivable that there e
more than one optimal grid that satisfies the criteria (3.9) or (3.10). From this standpo
both Eq. (3.10) and Eq. (3.9) should be treated as the grid adaptation criteria rather thar
optimal grid generation equations.

One of the most general structured grid generation strategies is based on the variati
approach proposed by Brackbill and Saltzmann [18]. In this method a grid is genera
as the solution of the minimization problem. By forming the variational principle with
linear combination of the integral measures of smoothness, orthogonality, and adaptatic
system of elliptic equations is derived. The new grid adaptation criteria can be incorpora
into this approach by constructing an integral measure of adaptation so that the Eu
Lagrange equations associated with the minimization of this integral alone give Eq. (3
On one hand, the minimax principle guarantees that the coordinate mapping obtaine
the solution of this minimization problem is not singular [19]. On the other hand, the ne
grid adaptation criteria provide that the leading term of the truncation error is minimiz
so that the finite difference approximation Eq. (3.2) calculated on the optimal grid exhib
superconvergence properties.

Remark 3.1. In spite of the fact that the present analysis has been performed for the fi
derivative fy, it can be directly extended to an equation or a system of equations, which c
be represented as

fx(u) = g(x), (3.12)

whereg(x) is a given function. For example, the steady-state 1-D Burgers equation writt

in conservation law form is
9 [ u? au
— (== —u=)=0 3.13

ax ( 2 'uax> ' (3.13)

whereu is a positive constant. A comparison of Eq. (3.13) dpdhows that for the Burgers
equation the optimal grid can be constructed by using Eq. (2.58) with
u? au
fX)=——pnu—. 3.14
(0= — g (314)
It should be pointed out that the above conclusion is valid if the second derivative
(uy)x and the convective terrfu®/2), are approximated consistently.
In real numerical applications, the exact analytical solution is unknown. The proble
can be overcome by using the numerical solution, which approximates the exact solut
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to build the monitor functionf (x). As mentioned earlier, because of the presence of th
O(A¢) term on the right-hand side of Eq. (2.13), the optimal grid is rather stable to pert
bations caused by numerical approximation of Eq. (2.58). The same conclusion is dr:
for the multidimensional grid adaptation criteria. Therefore, one can say with reasone
confidence that the optimal grid generated by using the numerical solution should pres
its superconvergence property. An analogous technigue is applied to unsteady problem
generate the optimal grid at each time step, the unknown monitor function can be constru
by using the numerical solution taken from the previous time step.

The same approach can be applied to the Euler and Navier—Stokes equations. The
Euler and Navier—Stokes equations can be written in conservation law form as

oF
i 0, (3.15)
where for the Euler equatiomsis the inviscid fluxFi, and for the Navier—Stokes equations
F is the inviscid flux minus the viscous flug, — Fyis.

As follows from Eq. (3.9), any component of the vedtotan be chosen as a function
with respect to which a grid is adapted. Although that choice provides increase in accur
for this particular vector component, it may not result in decrease in the truncation er
for the remaining vector components. In fact, as many components as the Wetasr
that many optimal grids can be generated. Since the different vector components may
strong gradients and local extrema in different regions of the physical domain, this kinc
grid adaptation is not effective. In such a case the monitor fundtion can be obtained
by using the method of least squares. Because the optimal grid generation equation:
invariant with respect to stretching of the functidrix) and its derivatives, the second
derivatives ofF", n = 1, N can be normalized as

Frx) = IR (3.16)
XX mxaxi F)?x}

The result is that all of the vector components are of the same order and, conseque

make proportional contributions to the second derivafiyeused to generate the optimal

grid (Eq. (2.58)). The resulting functiofy is obtained as the solution of the minimization

problem,

N
ST FLx0) = fu(x)]* — min (3.17)

|
i=0 n=1

inthe least squares sense. The funcfignconstructed in this fashion allows one to generate
a grid which is optimal for the whole vectBirather than for its particular component. Note
that the power in Eq. (3.17) should be chosen in accordance with the powerlaf tioem

in which the solution of the Euler or Navier—Stokes equations is sought.

4. RESULTS AND DISCUSSION

To validate the applicability and efficiency of the new method, several 1-D and one 2
test examples are considered. For each 1-D test function, five series of calculations |
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been executed on different grids with the same number of grid points. The first calculat
is done on a uniform grid; the second uses the standard grid adaptation criterion be
on the arc length or the second derivative of the test function; the third is performed
the optimal grid obtained as the analytical solution of Eq. (2.14); the fourth employs t
optimal grid (2.58) generated numerically by using the following approximation for th
second derivative:

hi fiza — (i +hig) fi +hipafizg
hihip1(hy +hi1)/2 ’

(fxi = hi =X — X_1. 4.2)

This formula is reduced to the second-order three-point central approximatigp ibfan
equispaced grid in the physical domain is used. The integrals in Eq. (2.58) are compt
with trapezoidal rule integration. As a result of this integration, the strictly increasir
function £(x) is obtained and is then reversed by using a third-order accurate piecew
spline interpolation. The fifth calculation is also executed on the uniform grid; howeve
instead of apth-order approximation, ép + 1)th-order accurate discretization is applied
to calculate bothf: andx;. At each boundary, one-sidgath-order differences are used for
fé andx;.

To estimate the accuracy of the method, pie-order finite difference approximation of
fy is compared with the exact value of the first derivative calculated at the same grid ne
in the L, norm. The order of approximation is estimated on successively refined grids, 1
coarsest of which contains 20 cells and the finest 2560 cells.

4.1. 1-D Test Examples

Second-order approximation,$ 2. The first test example is an evaluation of the first
derivative of f (x) = x™, 0 < x < 1 by using a second-order central difference fpand
X:. Whenm is sufficiently large, this function has a boundary layer of wi@ki/m) near
x = 1. For this test case, the exact optimal grid point distribution defined by Eq. (2.25) ¢
be found analytically:

Xopt(£) = E 1. (4.2)

In contrast to [9] the new grid adaptation criterion provides the concentration of grid noc
near the boundary layer of the functidrix).

An error convergence plot for this test function & 23) is presented in Fig. 2. As one
might expect, the., norm of the truncation error calculated on a uniform grid exhibits the
O(AE?) convergence rate that is consistent with the second order of accuracy of the cer
differences. However, the same second-order approximatifpnari the optimal grid (4.2)
exhibits the convergence rate which is higher tixm£2). Although the accuracy ofy
obtained on the adaptive grid (2.30) witfy evaluated by Eq. (4.1) is slightly less compared
to results of the optimal grid (4.2), the order of approximation is about 3.5. To show t
superiority of the present method over the standard grid adaptation criterion (2.45),
truncation error that is calculated on grids adapted in accordance with the arc lengtt
f (x) is also shown in Fig. 2. In spite of the fact that the standard grid adaptation technic
slightly improves the accuracy of calculation in comparison with the equispaced grid pc
distribution, the convergence rate is less tm£2). The fact should be emphasized that
the new grid adaptation criterion (2.30) not only provides superconvergent results, bu
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—&—— Uniform, 2nd order
——a&—— Numerical optimal, 2nd order
——&—— Analytical optimal, 2nd order
——w—— Standard, 2nd order
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FIG. 2. Error convergence for a second-order approximatiofia¥f f (x) = x™, calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with
arc length criterion, and (5) uniform grid with third-order accurate discretization.

compared with the uniform grid results on the finest mesh, reduces the error by six or
of magnitude.

An advantage of the consistent grid adaptation (2.14), which is based on the fact tha
truncation errors resulting from the approximationgoandx: cancel each other, becomes
obvious when the optimal grid results are compared with those obtained by using a th
order accurate approximation on a uniform grid. Figure 2 shows that both the second-o
approximation on the optimal grid and the third-order discretization on the uniform gt
with the same number of grid points have B&A£%) convergence rate. However, the
optimal grid results are about 1@mes more accurate.

Note that the optimal grid (Eq. (4.2)) is essentially nonsmooth and does not meet
standard criterion of smoothness, whiclxis /x:| < O(1) [19]. Furthermore, the optimal
mapping (4.2) is singular at the point= 0 wherex; — oo. In spite of this fact, the above
comparisons corroborate the theoretical analysis and demonstrate the advantage of th
grid adaptation criterion over the standard approaches.

Another very useful characteristic feature of the new method is its generality, in t
sense that, if a single second-order hybrid discretization is used for fpathd x:, the
same optimal mapping (4.2) minimizes the leading truncation error term. To demonsti
this property, the error convergence of the hybrid approximation obtained on the unifc
and optimal grids with the same number of grid points are depicted in Fig. 3. The hyb
difference operator is constructed as follows:

(ﬂ) _ gz (fiva — fiow), i even w3
0t /; ﬁ(_:sfi +4fi 1 — fiy2), 1 odd.
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FIG. 3. Error convergence of a second-order hybrid approximatiofy aff f (x) = x™, calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

The identical approximation is employed for the metric coefficienA comparison shows
that the global order of the consistent approximationfofind x¢ is increased by 1 on
the same optimal grid (4.2) used for the nonhybrid approximation. As has been showi
Section 2, the approximation of the metric coefficient and the first derivetiv&hould
be the same; otherwise the optimal mapping defined by Eq. (2.30) does not minimize
leading truncation error term. To show that the discretization of the metric coefficient ple
acrucial role in reduction of the truncation error, a two-point central difference expressiol
used to approximate: in the whole computational domain, while the same hybrid schemn
(4.3) is used forf:. An error convergence plot for this inconsistent approximation, whic
is also depicted in Fig. 3, shows that if the metric coefficient is evaluated in a differe
way thanf;, the order of approximation on the optimal grid deteriorates to 2. Also, Fig.
shows that the truncation error increases by a factordirfl@omparison with the consistent
discretization results.
The second test function considered is
f(x):é, 0<x<1l (4.4)
(em-Hx+1 -~
Inthe present test example, the parametesas chosen to be 5. This function has a boundar
layer of width O(m/(€™ — 1)) at x = 0. For this function the optimal grid generation
equation (Eq. 2.14), which depends on the order of approximation rather than on a partic
type of discretization, can be solved analytically, yielding

e 1
en—1°

Xopt(§) = (4.5)

It should be emphasized that Eq. (2.30) yields the same optimal mapping as Eq. (
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FIG. 4. Error convergence for a second-order approximatiofy @f Eq. (4.4), calculated on (1) uniform grid,
(2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the
length criterion, (5) uniform grid with third-order accurate discretization, and (6) numerical optimal grid genera
iteratively.

The optimal grid (4.5) is the well-known exponential coordinate transformation, which
widely used in the literature (e.g., [1, 9]) for solving boundary layer problems. Howeve
the mapping (4.5) is optimal only for a special class of functions, such as Eq. (4.4), and
optimal for other functions. Similar to Figs. 2 and 3, error convergence plots for the seco
order symmetric and hybrid discretizations (4.3) are depicted in Figs. 4 and 5, respectiv
These figures show that the error obtained on the optimal grid has a convergence
of O(AE£3%) that is even higher than follows from the theoretical analysis. The optim
grid point distribution constructed by the numerical integration of Eq. (2.30) reduces 1
truncation error by about four orders of magnitude compared to the uniform grid results,
does not provide the same accuracy as the optimal grid (4.5). The accuracy can be impr
if the iteration procedure described in Remark 2.4 is applied. For this test problem,
to 20 iterations were needed to reach convergence. No attempt was made to optimize
iteration process. Referring to Fig. 4 one can see that this procedure considerably incre
the accuracy and provides practically the same convergence rate as the analytical op
grid (4.5).

The importance of the metric coefficient evaluation is illustrated in Fig. 5. Analogous
the foregoing test case, the inconsistent discretizatiof @ndx; leads to decreases in
both the order and accuracy of the approximation. When the metric coefficient and the
derivative f; are evaluated by using the same hybrid operator (4.3), the convergence
obtained on the optimal grid (4.5) beconm@$A£3).

From the present theoretical analysis it follows that the new grid adaptation strate
may be quite sensitive to the inflection points of the functfam). In order to verify this
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FIG. 5. Error convergence of a second-order hybrid approximatiom, asf Eq. (4.4), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

conclusion, the following function,

f(x) = [sin(3mx) — 27siMmx)], 0<x <, (4.6)

1
36m?
which hasminflection points, has been chosen as a test function. Despite the presence o
inflection points wherdyx = 0, it is possible to construct the optimal mapping analytically
without using Eq. (2.34). It can be done if the optimal grid (2.30) is generated in ea
interval of constant signs dfx separately:

. |
=2 <) jotm @

T 1 .
Xopt(§) = a(] -1+ o arccog2j — 2mé¢ — 1], o o

In numerical calculations the parameterwas taken to be 5. The above optimal coordi-
nate transformation obeys Eq. (2.30) in the entire physical domain except at the inflect
points.

Figures 6 and 7 are analogous to Figs. 2 and 3, accordingly. As one can see in Fi
the presence of the inflection points results in the convergence rate ®éixiy-®), which
is lower than predicted by the theoretical analysis. Nevertheless, the optimal grid ada
tion reduces the truncation error by a factor of 20 in comparison with the uniform gr
results. One of the reasons for such a behavior is that high-order derivatives of the func
f (x) in Eq. (4.6) are well bounded, which makes the approximatiofy afn the uniform
grid sufficiently accurate. The use of the standard grid adaptation criterion basg, on
(Eq. (2.34)) leads to deterioration of the convergence ra®@ &%), and at the same
time theL, norm of the truncation error is about 50 times less accurate than the unifo
grid results. Figure 7 shows that the inconsistent approximatida ahdx; increases the
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FIG. 6. Error convergence for a second-order approximatioriyobf Eq. (4.6), calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with 1
f«x criterion, and (5) uniform grid with third-order accurate discretization.
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FIG. 7. Error convergence of a second-order hybrid approximatiof, aff Eq. (4.6), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.
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FIG. 8. Pointwise error distribution for a second-order approximatiorf,obf Eq. (4.6), calculated on the
analytical optimal, numerical optimal, and corresponding uniform grids.

truncation error by five orders of magnitude in comparison with the consistent approxin
tion results calculated on the optimal grid.

To give greater insight into where the maximum error occurs, pointwise error distrib
tions obtained on both the uniform and optimal grids are shown in Fig. 8. As expect
the truncation error calculated on the optimal grid achieves its maximum values at the
flection points, while the maximum error on the uniform grid occurs at points where tl
third derivative| fxx«| is large. In contrast to the uniform grid, the most accurate appro
imation of the first derivativef, on the optimal grid is near the local extrema fx).
Using Eg. (2.34) instead ofyx results in a gain in accuracy in the vicinity of the in-
flection points. Figure 8 presents a pointwise error plot obtained by this method as w
The error distribution obtained on the optimal grid is essentially nonuniform, which give
an indication of the difference between the present and equidistribution grid adaptat
criteria.

From the practical point of view, itis very important to improve the accuracy of calculatic
when the functionf (x) has an interior layer. In this test example, the function

2ex [17+ 73(ex)? + 55(eX)* + 15(¢X)"]

oo = 1571 + (ex)7]

2
+ —arctantex), —1<x<1 (4.8)
b

is considered. In the calculations, the parameteas taken to be f)which results in the
function (4.8) having a pronounced interior layer of wiil/¢) atx = 0. This function has
been chosen so that the optimal grid point distribution (2.30) can be integrated analytice
As in the foregoing example, the singularityt (— 400) in the optimal mapping (2.30),
resulting from the inflection point at = 0, can be overcome by generating the optimal gric
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FIG. 9. Error convergence for a second-order approximatiori,obf Eq. (4.8), calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with
arc length criterion, and (5) uniform grid with third-order accurate discretization.

inthe—0.5 < x < 0 and 0< x < 0.5 intervals separately, which gives

—\/ s, 0<E<05

Xopt(£) = (4.9)

[ 21

In Fig. 9 the error convergence of the symmetric second-order discretizatigreeélu-
ated on the optimal grid (4.9) is compared with results obtained by second- and third-or
approximations on a uniform grid. Figure 9 also shows the truncation error calculated
grids generated by using the standard (2.45) and new (2.30), (2.34) grid adaptation crit
Because the internal layer thickness is comparable with the finest grid spacing, none o
uniform grids considered can provide second-order results. For the analytical optimal g
the convergence rate is of the order@fA&2®). Although it is less than the theoretical
limit, the truncation error on the finest mesh (2560 cells) has been reduced by more t
five orders of magnitude compared to the uniform grid results. The standard grid adapta
criterion (Eq. (2.45)), which is widely used to improve the resolution of steep gradients
the solution, does not provide the cancellation of the leading truncation error term. The
fore, these results are about two orders of magnitude less accurate than those obtain
the optimal grid (2.30), (4.1), (2.34), as is evident in Fig. 9.

A comparison of the hybrid approximation (4.3) on different grids and with differer
approximations for the metric coefficiextis presented in Fig. 10. i andx; are evaluated
identically, the same optimal grid (4.9) provides superconvergent results, while if the
approximations are different, the convergence rate is even lesthag?).




488 NAIL K. YAMALEEV

——&—— Uniform, hybrid consistent
——&—— Optimal, hybrid consistent

ar ——e—— Optimal, hybrid inconsistent
3k 1
: ~_ |2
2F
= 1F
g I
w i
= of
= [
e I
Ry -
- 3
2f 1
_3:_
IR AR B BN BN BN R |
1 15 2 25 3 35 4
log,,(Cells)

FIG. 10. Error convergence of a second-order hybrid approximatiofy aif Eq. (4.8), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

High-order approximations, p- 3. For a third-order discretization the optimal grid
generation equation, (2.55), cannot be solved analytically; however, the solution car
found in the approximate form of Egs. (2.57) and (2.58). The same function (4.4), us
in the second example, is taken as a test function. The first derivitiaed the metric
coefficient are evaluated by a third-order accurate formula as

(Ge)i = é (—20gi-1— 39 + 6011 — Gi+2), (4.10)
whereg(§) is either f () or x(&).

Figure 11 shows error convergence plots obtained on the optimal (2.57), (2.58), and
form grids with the same number of grid cells. Although for the mapping (2.57), (2.5€
the leading term of the truncation error is approximately equal to zero, the error conv
gence rate obtained on the optimal grid is ab@tA&38), which corroborates the the-
oretical results. Note that the same iterative technique used earlier for the second-o
approximations can be applied in the present case as well. However, because of the
that the optimal coordinate transformation (2.57), (2.58) is the approximate solution
Eq. (2.55), the iterations do not practically improve the accuracy of calculation. Therefo
the results are not presented here.

Thetruncation error can be reduced if the optimal grid generation equation (2.52) is sol
numerically. To avoid the solution of the third-order differential equation, a new depende
variable,u(x) = &, is introduced. Then Eq. (2.52), which is a second-order differentic
equation in terms ofi(x), is integrated numerically on a uniform grid constructed in the
physical domain. To close Eq. (2.52), the metric coefficigns taken to be proportional
to (4,4 at the boundaries. The metric coefficiépfound in this way is integrated, and
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FIG.11. Error convergence for a third-order approximatiorfobf Eq. (4.4), calculated on (1) uniform grid,
(2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance witg, the
criterion, and (5) uniform grid with fourth-order accurate discretization.

the optimal grid point distribution is obtained by a third-order accurate piecewise spli
interpolation of the functior§(x). As one can see in Fig. 11, these optimal grid result
exhibit a convergence rate of essentidllyA£#) and provide higher accuracy than results
calculated on the optimal grid (2.57), (2.58).

To demonstrate the superiority of the optimal grid adaptation over the equispaced
point distribution, an error convergence plot of a symmetric fourth-order accurate appr
imation of fy, calculated on a uniform grid with the same number of grid points, is als
depicted in Fig. 11. Thé&, norm of the truncation error of the third-order approximationr
(4.10) on the optimal grid is reduced by a factor of several hundred in comparison with
fourth-order accurate results obtained on the uniform grid.

Error convergence plots for the following hybrid approximation,

(af) gar (—2fi1 —3fi +6fip1 — fiyo), i even

ity _ _ , (4.11)
9§ /i gz (—11fi +18fi ;1 — 9fi;p+2fi15), i odd

calculated on the optimal and corresponding uniform grids, are shownin Fig. 12. The opti
grid results are about four to five orders of magnitude more accurate than those obtaine
the finest uniform grid. However, if the metric coefficient is evaluated by Eq. (4.10) in tt
entire computational domain while the approximatiorfofemains the same Eq. (4.11), the
error convergence rate of this inconsistent discretization becomes even les3(ihaf)
as the grid is refined.

The next test example is a fourth-order accurate approximation of the first derivat
of the function f (x) = x™, where the parameten has been chosen to be 49. The first
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FIG. 12. Error convergence of a third-order hybrid approximationfofof Eq. (4.4), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

derivativesf; andx; are discretized by a five-point symmetric approximation,

1
Q)i = ToAE (Gi—2—80i—1+ 80i+1 — Gi+2) . (4.12)
whereg(§) is either f (§) or x(&). If the order of approximatiomp is an even number, then
for f(x) = x™ the optimal grid generation of Eq. (2.14) can be solved analytically:

Xopt(£) = £ (4.13)

The above mapping is optimal in the sense of the minimization of the leading truncati
error term ifm > p; otherwise anypth-order accurate difference expression approximate
the first derivativef, exactly. If the parametean is fixed to be sufficiently large, one can
observe that as the order of approximatis increased, the optimal grid (4.13) becomes
more uniform; this characteristic correlates with the above theoretical analysis. The optil
grid point distribution can also be calculated numerically by using Eq. (2.58). At each g
point the unknown parametei(x) is found as a solution of the equation

Ta(er) =0, (4.14)

whereT,(«) is given by Eq. (2.63). For this particular choice of the functfdr), Eq. (4.14)
can be solved analytically:

Im-4

-1 4.15
“TbEm_2 (4.15)
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FIG. 13. Error convergence for a fourth-order approximationfpbf f (x) = x™, calculated on (1) uniform
grid, (2) optimal grid generated numerically, (3) analytical optimal grid, (4) grid adapted in accordance with the
length criterion, (5) uniform grid with fifth-order accurate discretization, and (6) numerical optimal grid generat
with the exactf,,.

Note that the optimal mapping (2.58), (4.15) is identical to the mapping (4.18)f4.
Error convergence plots calculated on the analytical (4.13) and numerical (2.58), (4.
optimal grids as well as on the corresponding uniform grid are shown in Fig. 13. As one «
see in this figure, the fourth-order approximation (4.12) on the optimal grid (4.13) exhib
an even higher convergence rate tf@mz®), which allows one to reduce the, norm of
the truncation error by six orders of magnitude in comparison with the uniform grid resul
The optimal grid (2.58), (4.15), generated numerically, provides superconvergent res
only on coarse grids, while as the grid is refined the order of approximation deteriorate
4. This deterioration results from the numerical approximation of both the second deriva
and the integral in Eqg. (2.58). Nevertheless, the evaluatidy oh the 80-cell optimal grid
(2.58), (4.15) is about three orders of magnitude more accurate than that on the unif
grid with the same number of grid points. One of the main reasons for such a behavior i
error introduced by the numerical approximationfef in Eq. (2.58). As mentioned above,
the optimal mapping (4.13) is singulgy — +oo até = 0, which considerably decreases
the accuracy of thd, approximation (4.1). This perturbation introduced into the optima
grid by the numerical evaluation (4.1) destroys the superconvergence property. Howe
if one uses the exact expression figk despite the fact that the integral in Eq. (2.58) anc
X (&) are calculated numerically, the order of approximation is practically recovered to
optimal value (see Fig. 13).

To demonstrate the importance of the consistent approximatiénafdx;, error con-
vergence plots calculated by using different hybrid approximations on the optimal &
corresponding uniform grids are depicted in Fig. 14. The fourth-order accurate hyk
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FIG. 14. Error convergence of the fourth-order hybrid approximatior,adf f (x) = x™, calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.

approximation is constructed as follows:

axe (fi2 = 8fi1 +8fipa — fii2), i even
(fo)i =197, , (4.16)
T2AE (=3fi_1 — 10f; +18fi ;1 — 6fi 2+ fiy3), i odd.

If the metric coefficienk; is evaluated by the same difference expression employed for ti
firstderivativef; (4.16), then the leading term of the truncation error vanishes on the optir
grid (4.13). Figure 14 shows the truncation error of the consistent hybrid approximati
of f: andx: exhibits a convergence rate ai(A£5). At the same time, if the metric
coefficient is discretized by the symmetric fourth-order accurate formula (4.12) in tl
entire computational domain, while the same approximation (4.16) is usedét fahe
convergence rate deteriorates@QgA£#) and the truncation error increases by a factor of
50-100 in comparison with the consistent approximation results. The deterioration of
error convergence rate on the finest optimal mesh presumably is caused by the mac
accuracy.

4.2. 2D Test Example

We shall seek a particular solution of Eq. (3.10) in the form

f(&,n) =edeln
Xopt(§, 1) = €5 en (4.17)
Yopt(§, 1) = &l
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wherea, 8, andy, ¢, 6, ¥ are given and unknown constants, respectively. Note that th
choice off, x, andy uniquely defines the functiofh(x, y) in the physical domain. Because
the above mapping must be nonsingular, the Jacobian of the mapping,

JE ) = (i — go)er T PEedHm, (4.18)

should be positive in the whole computational domain, which leads to

yir — @6 > 0. (4.19)
Substituting Eqg. (4.17) into the first equation of (3.10) yields
(v — ¢0)a® = (—pa +yB)0° + (Yo — 6p)y°. (4.20)
Equation (4.20) together with the constraint (4.19) gives a family of the optimal grid

Assumingthat = v = g = 1 simplifies the equation considerably. Under this assumptic
Egs. (4.20) and (4.19) are reduced to

(y —0)e®=(y —a)0>+ (@ — 0)y° (4.21)
and
y —60 >0, (4.22)

respectively. Equation (4.21) has three real roots

yi=a-—20,
y2 =9, (4.23)
V3=«

The rootsy, andys are not appropriate because the second root does not meet the inequ
(4.22), while the third root implies that(x) = x. Therefore, the only nontrivial solution
of Egs. (4.21) and (4.22) is + 6 = «. By introducing a parameten so thaty /6 = m, the
particular solution of Eq. (3.10) can be written in the following form:

Xopt(, 1) = emitel 4.2
Yopt(§, 1) = emife '

m+2  2m+l

f(X,y) =x"miymT,

In the present test example the parameteanda have been chosen to be 10 and 3,
respectively. The corresponding optimal»# 21 grid and 30 isolines of the functidn(x, y)
are depicted in Fig. 15. Notably, the optimal grid is orthogonal neither in the domain noi
the boundaries. Moreover, the grid lines are concentrated near strong gradients, and ¢
same time, they are not strictly aligned to the isolineg ¢f, y). A second-order accurate
approximation off, is obtained by using two-point central differences for all ¢hand
n derivatives. A uniform grid is generated by the transfinite interpolation of the bounde
nodes, which are uniformly distributed along the boundaries. Because the optimal ¢
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FIG. 15. Optimal 40x 20 grid and 30 isolines of the functioh(x), Eq. (4.24).

(4.24) has been constructed under the assumption that the leading term of the trunc:
error in the¢ coordinate vanishes on the optimal grid, the grid is refined only, imhile

the number of grid cells im is fixed and equal to 20. Note that the grid refinement ir
the n coordinate does not influence the convergence rate of the truncation error, whicl

NAIL K. YAMALEEV

77
77T/

T 1T 777
17 l”;””’

===

e e

=

i e A
L 77 L
/I///,lllll/”’lll” IS
””/IIII?,”I’;III”,’,”

rll”’ﬂﬁl;’é’lll g

Ll

0.5 1 1.5 2 25

consistent with Eq. (3.10).

A comparison of the truncation error convergences obtained on the optimal and unifc
grids is shown in Fig. 16. Similar to the 1-D test examples, the global order of the symme
second-order approximation in two dimensions is increased by more than 1 on the opti
grid. Furthermore, the, norm of the truncation error on the finest mesh is about four ordel
of magnitude less than that obtained on the corresponding uniform grid. As can be see
Fig. 16, the new grid adaptation criterion enables one to reach the asymptotic converge
rate on coarse grids, while the application of a third-order accurate discretization on
uniform grid does not result in such essential reduction in the truncation error as on

optimal grid.
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FIG. 16. Error convergence for a second-order approximatiofyaif Eq. (4.24), calculated on (1) uniform
grid, (2) analytical optimal grid, and (3) uniform grid with third-order accurate discretization.

The importance of the identical approximations of the first derivatiizeand f, and
the metric coefficientse, y:, andx,, y,, respectively, is illustrated in Fig. 17. The figure
shows that iffs, x¢, andy; are evaluated by the same hybrid discretization (4.3), the o
der of approximation ir§ is increased by 1 if grid points are redistributed in accordanc
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FIG. 17. Error convergence of a second-order hybrid approximatiofy aff Eq. (4.24), calculated with the
consistent and inconsistent discretizations of the metric coefficient on the optimal and uniform grids.
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with Eq. (4.24), regardless which second-order approximations are useg, foy, and
y,. However, if the metric coefficients: andy; are evaluated by the two-point symmetric
second-order difference expression in the entire computational domain, rather than a
lected points as in the hybrid discretization, while both the hybrid approximatién(@f3)
and the optimal grid (4.24) remain the same, the result is that the order of the inconsis
approximation deteriorates to 2 and the truncation error increases’by 10

5. CONCLUSION

The new grid adaptation strategy based on the minimization of the leading truncation e
term of an arbitrarypth-order finite difference discretization has been developed. The ba:
idea of the method is to redistribute grid points so that the leading truncation error ter
resulting from the differential operator and the metric coefficients cancel each other. In t
way, the design order of approximation on the optimal grid is increased by 1 in the ent
computational domain. In contrast to most of the adaptive grid techniques, for the pres
method neither the truncation error estimate nor the specification of weighting parame
is required. Another very attractive characteristic of the new approach is its applicabil
to hybrid discretizations. It has been proven that if the differential operator and the me
coefficients are evaluated identically, then the same optimal grid adaptation criterion the
valid for nonhybrid discretizations can be used in the entire computational domain regard
of points where the hybrid difference operator switches from one approximation to anott
One of the main advantages of the new method is that it can be directly extended to mult
dimensions. It has been shown that the multidimensional grid adaptation criteria are fi
consistent with the one-dimensional counterpart. The 1-D and 2-D numerical calculati
show that the truncation error obtained on the optimal grid is both superconvergent
reduced by several orders of magnitude in comparison with the uniform and stand
adaptive grid results for all the test examples considered.
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